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Summary:
The modelling of the fluid-structure interaction of MEMS resonators with a surrounding fluid is a formi-
dable challenge. Only for resonators with slender beam geometries reliable methods are available. Here, 
we present a novel modelling approach that overcomes the geometry restrictions of beam-based meth-
ods while still being computationally efficient. We use this method to study the spectral response of a 
MEMS resonator immersed in a liquid. The results give insights into the fluid-structure interaction of 
MEMS resonators that could not have been achieved with established methods.
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Introduction
Resonators based on microelectromechanical 
systems (MEMS) play a key role in numerous 
sensing applications. This prominent role is not 
only due to the small size and low cost of MEMS 
resonators. MEMS resonators also establish a 
gateway between the physical world and the dig-
ital domain. An important aspect of this gateway 
is that MEMS resonators comprise mechanically 
moveable parts that interact with their environ-
ment. Different types of interactions can be uti-
lized to measure various physical quantities. 
One particular important interaction is the fluid-
structure interaction (FSI) of a MEMS resonator 
with a surrounding fluid [1]. This fluid can either 
be a gas or a liquid and for practically every 
MEMS resonator outside vacuum or near-vac-
uum FSI is the dominant interaction with the en-
vironment. Despite this prominent role of FSI and 
the long history of MEMS development, the FSI 
of MEMS resonators is well understood only for
a few limiting cases. Especially for resonators 
with beam geometries, various methods are 
available for determining the FSI. However, 
these models are only valid for resonators with 
slender beam geometries which severely limits 
their applicability. Moreover, only vibrational 
modes that can be found in beam geometries 
can be investigated with beam-based methods. 
These methods fall short of explaining the FSI of 
MEMS resonators vibrating in non-beam modes 
as the mode shown in fig. 1 [2]. Here, we present 
a novel method to investigate the FSI of MEMS 
resonators with non-beam geometries and 
demonstrate how these methods can be used for 
predicting the spectral response of MEMS reso-
nators in fluids.

Fig. 1. Non-beam vibrational mode of a cantilevered 
MEMS resonator. Such modes are present in every 
MEMS resonator. However, they appear at frequen-
cies of lower-order beam modes only if the width of 
the resonator is comparable to the resonator’s length.

Description of the Method
A difficult challenge in the modelling of MEMS 
resonators is posed by the mismatch of scales 
between large resonator geometries and small
fluid displacements. This scale mismatch pre-
vents the use of conventional computational fluid 
dynamics (CFD) methods. We address this chal-
lenge by modelling the fluid flow with a boundary 
integral representation. The pressure p exerted 
by a fluid flow field u on the resonator surface is 
then determined by inverting an integral equation
over the resonator surface A,

𝑢𝑢(𝒙𝒙) =  ∫ 𝑝𝑝(𝒙𝒙′)𝜓𝜓(𝒙𝒙,𝒙𝒙′)𝑑𝑑𝒙𝒙′𝐴𝐴 , (1)

where ψ is a geometry-dependent Green’s func-
tion. In doing so, we avoid a computationally 
costly discretization of the full fluid domain.

We assume that the resonator exhibits a thin ge-
ometry, i.e. its thickness is much smaller than the 
resonator’s width and length, which allows for 
using the Kirchhoff plate equation,
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𝐷𝐷 ∇4 𝑤𝑤 +  𝜌𝜌 𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2 = 𝑝𝑝,  (2) 

for modelling the solid mechanics of the resona-
tor. Here, w is the transversal displacement of 
the resonator, D is its flexural rigidity, ρ its den-
sity and t is the time. This approach allows for 
going beyond beam models while circumventing 
the complexity of three-dimensional continuum 
mechanics models. We combine equation (1) 
and (2) and solve the resulting equation using a 
non-conformal finite element method [3]. This 
method does not suffer from the limitations of 
beam-based models but avoids high computa-
tional costs. 

Results 
Using the method presented above, we can in-
vestigate how the FSI of a MEMS resonator 
changes as the geometry deviates from an ideal 
beam geometry [4]. As an example, we compute 
the spectral response of a cantilevered MEMS 
resonator as a function of its anchor width shown 
in fig. 2. 

 
Fig. 2. Deflection spectrum as a function of resona-
tor width for a cantilevered rectangular silicon MEMS 
resonator with a length of 800 µm and a thickness of 
5 µm. The resonator is immersed in water and sym-
metrically driven at both of its free corners. The reso-
nances of the first nine beam vibrational modes are 
marked by dashed lines. 

At a width of 50 µm, the resonator is well approx-
imated as a beam and only beam vibrational 
modes can be found in the frequency interval up 
to 500 kHz. These beam modes shift towards 
lower frequencies as the resonator width in-
creases indicating an increased fluid-added 
mass. Above a width of 200 µm, additional reso-
nances are visible in the spectral response which 
correspond to non-beam modes like the mode 
shown in fig 1. These modes experience a larger 
increase of the fluid-added mass than classical 
beam modes which results in a lager decrease 
of their resonance frequency as the resonator 
width increases. 

The resonance frequency is not the only quantity 
that depends on the resonator width. The quality 
factor of all vibrational modes also changes for 
different resonator widths. The resonance fre-
quencies and quality factors for different beam 

modes and resonator widths are shown in fig. 3. 
Generally, it can be observed that the quality fac-
tor increases as the width of the resonator in-
creases. 

 
Fig. 3. Quality factors of the beam vibrational modes 
of the spectrum in fig. 2. The aspect ratio of the reso-
nator is indicated by different marker symbols shown 
in the legend. 

A similar analysis can be performed for non-
beam modes. A comparison of the results re-
veals that the quality factor of any vibrational 
mode is well predicted by 

𝑄𝑄 = 0.23 𝛽𝛽0.45,  (3) 

where β is a generalized Reynolds number. 

Conclusion 
We have presented a modelling approach for the 
FSI of MEMS resonators with non-beam geome-
tries. The method mitigates scale mismatches 
that are inherent in the modelling of MEMS-FSI 
by combining a boundary integral fluid flow rep-
resentation with plate solid mechanics. We use 
this approach to study the spectral response of 
non-slender resonators in water. The results 
show that the quality factor of different modes 
can be predicted by a generalized Reynolds 
number. We anticipate that the presented meth-
ods and results will play a vital role in the devel-
opment of novel MEMS resonators with non-con-
ventional geometries. 
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