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Summary:
In this contribution, we present a novel 3D printed multi-material, electromagnetic vibration harvester. 
The harvester is based on a cantilever design and utilizes an embedded constantan wire within a matrix 
of polyethylene terephthalate glycol (PETG). A prototype has been manufactured with a combination of 
a fused filament fabrication (FFF) printer and a robot with a custom-made tool.
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Introduction
Energy harvesting provides a sustainable way to 
power wireless sensor nodes (WSN) [1]. 3D 
printed energy harvesters offer the possibility to 
manufacture application specific harvester ge-
ometries and sizes [2]. Printing multiple materi-
als has been utilized in the field of triboelectric 
harvesters [3]. 3D printing multiple materials has 
not been researched regarding electromagnetic 
vibration harvesters yet [2]. In this contribution, 
we propose a 3D printed cantilever made of 
PETG and an embedded constantan wire for 
electromagnetic energy harvesting.

Methods and Materials
A cantilever-geometry (clamped-free) was ap-
plied for the harvester. The dimensions are 
shown in Fig. 1. The red area was clamped while
the green area was the free tip. The cantilever 
was analytically modelled as a layered Euler-
Bernoulli-beam with tip mass (green area = tip)
and external excitation.

The equation of motion can be expressed 
as [4], [5]:

(1)

With layer j, number of total layers s, Young’s 
modulus E, deflection w, density ρ, area A, am-
bient amplitude W0, excitation angular frequency 
Ω and time t, respectively. The moment of iner-
tia I can be calculated with the parallel axis theo-
rem [4]:

(2)

The cantilever features a height of 1 mm and
was printed via FFF with PETG. A constantan-
wire (Ø 0.2 mm, 0.1 mm distance between 
traces, 5 turns) was embedded during the print 
with a custom-made tool and a KUKA Agilus 
KR 6 R900-2. A height of 1 mm was chosen in 
order to achieve a low resonance frequency, 
while still allowing the wire-embedment. Low fre-
quencies offer more energy [6]. The composite
layer was simplified for calculation and assumed 
as a homogenous layer as shown in Fig. 2.

Fig. 2. Cross section of cantilever, (left) printed layers, 
(right) analytical layer-numbers with homogenized 
layer.
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Fig. 1. Geometry and dimensions of the cantilever with 
embedded wire.
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We combined the Young’s modulus and density 
of the wire and PETG-matrix by the correspond-
ing volume fraction in the layer. The displace-
ment w(x,t) in z-direction is given [5]: 

 
(3) 

With the boundary conditions and (3), the linear 
system of equations can be solved. For non-triv-
ial solutions the determinant of the system has 
to be zero [5]: 

  1 + cos(𝜅𝜅𝑖𝑖𝑙𝑙) cosh(𝜅𝜅𝑖𝑖𝑙𝑙)  
+ 𝜀𝜀𝜅𝜅𝑖𝑖𝑙𝑙[cos(𝜅𝜅𝑖𝑖𝑙𝑙) sinh(𝜅𝜅𝑖𝑖𝑙𝑙)
− sin(𝜅𝜅𝑖𝑖𝑙𝑙) cosh(𝜅𝜅𝑖𝑖𝑙𝑙)] = 0 

(4) 

with the length l, the mass-ratio ε between tip  
mass and cantilever and the variable κ [4], [5]:  

 
(5) 

From (4), the eigenvalues can be derived by 
searching for zero points as shown in Fig. 3. The 
resulting angular frequency can be calculated 
with [4], [5]:  

 

(6) 

 
Fig. 3. Frist eigenvalue of the cantilever with tip-mass 

Results and Discussion 
Utilizing equation (6) an angular frequency of 
248.9 s-1 and a resonance frequency of 39.6 Hz 
was calculated for the first resonance frequency. 
The simulated resonance frequency in COMSOL 
with the embedded wire-structure was 37.7 Hz. 
Fig. 4 depicts the specimen after embedding the 
wire during the printing-process. The finished 
specimen showed a warping effect towards the 
side with the embedded wire. This is expected 
due to the nonsymmetric layer-order as shown in 
Fig. 2. Magnets will be added around the moving 
area of the cantilever as shown in Fig. 5 in order 
to electromagnetically harvest energy from me-
chanical vibrations. 

 
Fig. 4. Cantilever during printing-process after embed-
ding the wire in layer 4. 

 
Fig. 5. Cantilever with embedded wire and magnets. 

Conclusion 
A theoretical model, simulation results and the 
fabrication of a multi-material 3D printed cantile-
ver have been shown. Future work will focus on 
the characterization of the harvester and the 
electrical energy output. 
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