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1. Introduction

This work is part of a project on experiment, modeling and simulation of electronic electro-active polymers
(EEAPs), which arise nowadays as novel materials with promising applications [1]. For many years,
EEAPs have been known to be capable of changing shape and size under the application of electric
loading, but the applications of EEAPs only caught attention recently with the discovery of new materials,
which can produce giant deformation. EEAPs offer the possibility to make actuators that can be used in
the development of lightweight, inexpensive, resilient, damage tolerant, noiseless and agile robotic
systems. These materials have been considered as a potential alternative to materials that are commonly
used for actuators in adaptive structures like piezoelectric ceramics, piezoelectric composites, shape
memory metals and alloys, magneto- and electro-rheological fluids. However, the application of EEAPs is
not limited to the development of actuators. Because of their capability to produce large deformation and
to change their electrical properties when undergoing large deformation, EEAPs can also be used as
sensors to measure large strains. Note that in actuation mode EEAPs are subjected to electric loading
and in sensing mode, by measuring the capacitance of the materials, the amount of deformation can be
determined [4].

EEAPs can be classified as a sub class of the so-called electro-active polymers (EAPs). Another sub
class of EAPs is called ionic electro-active polymers (IEAPs). The main difference between EEAPs and
IEAPs is that EEAPs are driven by Maxwell forces while IEAPs are driven by the diffusion of ions inside
the materials. The advantage of IEAPs is the requirement for low drive voltages but they have slow
response and there is the need to maintain their wetness. In addition, it is difficult to sustain direct-
current-induced displacements. The major disadvantage of EEAPs is that they require high voltages.
However, the advantages of using EEAPs in developing actuators include rapid response, the ability to
operate in room conditions for a long period of time and very importantly the ability to hold the induced
displacement under activation by a direct-current voltage. These properties make EEAPs very suitable for
actuators and sensors.

As EEAPs have a great potential in the development of actuators and sensors, understanding the
response of EEAPs under both electric and mechanical loading is a key problem. Despite this, there exist
until now only a few experimental works that can actually serve to characterize the electro-mechanical
properties of these materials. Besides, despite the fact that there exists a coupling phenomenon between
the mechanical and the electrical response of the materials, and despite the fact that there exist
discrepancies between measurement, modeling and simulation, until now only simple models are used to
explain experimental data. In modeling and simulation of EEAPs, large deformation, nonlinear
polarization and viscosity should be taken into account together with the consideration of the electric field
in the free space surrounding the body of interest [2,3,5-8]. Therefore, from the modeling side, in order to
understand and correctly describe the behavior of EEAPs, there is the need for a more comprehensive
approach that uses extended versions of conventional models in electricity and elasticity and takes both
the fully coupled nonlinear electroelastic and viscoelastic effects into account. From the simulation side,
the numerical simulation of EEAPs requires the use of the finite element method in combination with, for
example, the boundary element method in the case no simple formula can be used to take into account
the effect of the electric field in the free space surrounding the body of interest.

In this paper, we present the simulation of EEAPs by taking into account large deformation, nonlinear
electric polarization and the contribution of the free space surrounding the body of interest using the
coupling between the boundary element method and the finite element method. In what follows, the
formulation of the problem is described and a numerical example is presented to demonstrate the
importance of the contribution of the free space.
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2. Formulation

Let us denote the undeformed configuration of the body under consideration by B, with the coordinate of
each point denoted by X and the deformed configuration by B, with the coordinate of each point
denoted by x = (p(X) . Corresponding to these two configurations we denote the electric field, the electric

displacement and the electric polarization by E, D, P and e, d, p in B, and B, respectively. In the

case considered here, we assume that the electric loading is static, there is no magnetic field and when
viscous elastic effects can be neglected, the behavior of EEAPs can be modeled by using the theory of

nonlinear electro-elasticity, in which with the help of a free energy density function W that depends on
the current state of deformation represented by the deformation gradient F =0x/6X and on the electric

field E, a virtual work formulation of the problem can be constructed. This virtual work formulation can
then be used to solve the problem of nonlinear electro-elasticity numerically by using, for example, the

finite element method. An EEAP material considered here is said to be isotropic if Wis an isotropic
function of the Cauchy-Green tensor C = F-F and the tensor EQE. In this case the free energy density
function is an isotropic function of six invariants /I, to lg defined as: Iy = C:I, I, = C.C, I, = det C; I, =

IE®E], Is=C:[E®E], l;=C*:[E®E], where I is the rank two unit tensor. The function W can be constructed
so that, in the absence of electric stimulations, the material behaves exactly as a nonlinear material in
nonlinear elasticity. The purely elastic behavior of the material is controlled by the three invariants /; to /5.
When the material is subjected to an electric field, the effect of the electric field is accounted for by the

three invariants /4 , Is and ls. The dependency of the free energy density function W on the two invariants
Is and I means that the material will exhibit a nonlinear electro-mechanical coupling behavior through

these two terms. In order to determine the format and parameters of the free energy density function W,
a model is chosen and experimental tests are performed. The model’s parameters are then determined
from experimental data.

The above mentioned energy function can be constructed by assuming that there exists a function WOe
such that the Cauchy stress tensor o and the electric polarization p in B, can be computed by
o =J" [0 W, ]-F (1)
and:
p=-J"0,W, (2)
where J =detF .

In addition we define the total stress tensor 6 as the combination of the Cauchy stress tensor o and the
stress induced by the electric body force

6:a+e®d—%ao[e~e]l (3)
where ¢, is the electric permittivity of vacuum. By using this assumption, the electric displacement in
reference to the deformed configuration B, and the total stress tensor can be computed as

d=—J'F-0.W, (4)
and
G=J" [aFWOF] -F! (5)
where
W, = W, (F.E) —%SOJC" [E®E] (6)

in which W, (F,E) is an energy function such that: W,, | =W,|. .-

In addition, in reference to the undeformed configuration B, we have

P =—-0W, (7)
and
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D= _aEVI/oF (8)

With the above assumption and definitions, the coupled electro-mechanical problem can be formulated as
the following virtual work equation

sj W,.dv — j b, - 3av — j t,-5gds + j Sy-G,ds=0 (9)

B, B,
where b, is the mechanical body force, t,is the surface traction, g, is the surface charge, W, = J™'W,,
and v is the electric potential defined such that

e=-V,y (10)
Note that the equation (9) is used to describe only the finite domain B, . In the case the infinite domain
V/ of the free space surrounding B, should be taken into account, the electric field in V' can be
computed using the following system of equations

Viy=0 in V/
v =y, on oV, (11)
d-n=q, on oV
which can be transformed into a boundary integral equation in the format
0G(€,x
(8 =opv. s, [ [w(x)=w(E)] 25X ds + [ qB(¢x)s =0 (12)
v av/

where § is the source point, x is the field point, G is the fundamental solution of the Laplace’s equation

in (11) and aG(f X)i is the derivative of G along the unit normal vector n of the boundary oV, , q is the
flux defined as
oy(x)
- 13
q=8— (13)
In addition to equation (12), we assume that the total charge of the system is zero, therefore
I qds =0 (14)

oV
The three equations (9), (12) and (14) form a coupled system of equations that can be used to describe
the coupled electro-mechanical problem under consideration. Here we use the finite element method to
discretize equation (9) and the boundary element method to discretize equations (13) and (14). In order to
solve the resulting system of equations, the Newton-Raphson method is used and we have a coupled
BEM-FEM procedure. For further details, see [6,7].

3. Numerical example

In order to demonstrate the coupled BEM-FEM mentioned above, we consider here the 2-D simulation of
a C-shaped actuator as depicted in Figure 1. The thickness of the actuator is 15 um, the height is 45 um
and the length is 60 um. Between the bottom and the top of the actuator we put an electric potential of 1
KV. The simulation is carried out by using two approaches: by using only the finite element method and
by using the coupled BEM-FEM presented above. In the first approach, the mesh used in the FEM
simulation is presented in Figure 1 with 200 4-node quadrangular elements. In the second approach, the
same FEM mesh is used but on the boundary of the FEM mesh, 90 linear 2-node boundary elements are
used to simulate the contribution of the space surrounding the actuator. As numerical example, the
material properties are given using the following energy function:

W, =4[c: I—3]—uInJ+%[an]2 +al : [E®E]+BC [E®E]—%31JC" [E®E] (15)
in which the following parameters are chosen:
n=0.05MPa, A=006MPa, a=02¢, B=¢g, g =5¢, (16)

The numerical results are plotted in Figures 2 and 3. In Figure 2, the simulated deformed shapes of the
actuator are presented, on the left by using only the finite element method (the first approach) and on the
right by using both the finite element method and the boundary element method (the second approach).
For convenience, the undeformed configuration is also presented. It can be seen that not only the
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Figure 1: C-shaped actuator: FEM and BEM mesh
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Figure 2: Electric potential under deformed configuration: FEM (left) and BEM-FEM (right)
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Figure 3: Total displacement of the top line
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distributions of the electric potential but also the deformations are different in the two cases. In order to
emphasize further these differences, in Figure 3 the simulated displacements of the top line of the
actuator are plotted.

4. Conclusion

Numerical simulations show that in simulating EEAPSs, the contribution of the free space surrounding the
body of interest should be taken into account. The difficulty in doing so lies in the fact that in using the
finite element method, not only a large mesh is required but, because of large deformation, the mesh
itself should be updated frequently. A combination of boundary element method and finite element
method is particularly suitable here since, on the one hand the boundary element method is very suitable
for linear problems in infinite domains, on the other hand, the finite element method is convenient in
dealing with nonlinear problems but cumbersome when the domain of interest is large and a remesh of
the domain is required after every few iterations.

Acknowledgments

The authors greatly acknowledge financial support of the German Research Foundation (DFG) under the
project "Electronic electroactive polymers under electric loading: Experiment, Modelling and Simulation”,
Grant Number: STE 544/36-1.

References

[1]1 Bar-Cohen Y. Electro-active polymers: current capabilities and challenges. Proc. SPIE- Smart
Structures and Materials: Electroactive Polymer Actuators and Devices, 2002; 4695: 1-7.

[2] Dorfmann A and Ogden RW. Nonlinear electroelasticity. Acta Mech., 2005; 174(12):167-183.
[3] Goulbourne N, Frecker M, Mockensturm E and Snyder A. Modeling of a dielectric elastomer
diaphragm for a prosthetic blood pump. Proc. SPIE - mart Structures and Materials: Electroactive

Polymer Actuators and Devices, 2003; 5051: 319-331.

[4] Fox J W. Electromechanical Characterization of the Static and Dynamic Response of Dielectric
Elastomer Membranes, 2007. Master Thesis. Virginia Polytechnic Institute.

[5] Kofod G. Dielectric elastomer actuators, 2001. PhD Thesis. Riso-R-1286 (EN), Denmark.

[6] Vu D K and Steinmann P. A 2-D coupled BEM-FEM simulation of electro-elastostatics at large strain.
Computer Methods in Applied Mechanics and Engineering, 2010; 199(17-20), 1124-1133.

[71Vu D K, Steinmann P and Possart G. Numerical modeling of nonlinear electroelasticity.
International Journal for Numerical Methods in Engineering, 2007; 70(6), 685 - 704.

[8] Wissler M and Mazza E. Modeling and simulation of dielectric elastomer actuators. Smart Mater.
Struct., 2005; 14: 1396-1402.

SENSOR+TEST Conferences 2011 - SENSOR Proceedings

327



