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Abstract

We present a model for the simulation of the hysteretic large-signal behavior of ferroelectric actuators.

The model is based on the Preisach operator and takes advantage of an analytic weight function. Here,

we concentrate on characterizing the transducers’ dynamic behavior. First, the influence of creep and

rate-dependence on the polarization signal is investigated by means of measurements on lead zirconate

titanate samples. In a second step, the model is extended to describe these phenomena. The weight

function is modified to a frequency-dependent formulation with a view to considering the model output for

rate-dependent input signals. Creep in the polarization signal is covered by an additional creep operator.

A comparison of measurements versus simulations illustrates the benefits of the enhanced model and

demonstrates the need of considering creep and rate-dependence separately within the model.

1 Introduction

Ferroelectric sensors and actuators are widespread in research and industrial applications due to their abil-

ity to convert mechanical into electrical energy and vice-versa. The functional parts of such applications

are often based on piezoceramic materials like lead zirconate titanate (PZT). The multitude of advantages

of these materials is accompanied by a strong hysteretic large-signal behavior, directly related to the high

driving levels required for actuators. These non-linearities are provoked by the switching nature of the ferro-

electric domains, regions with the same electrical dipole orientation of the underlying crystal unit cells. If a

critical threshold is passed for a single domain, it does not only orientate along the electric flux lines but also

switch by 90◦ as well as 180◦. The time-dependence of these incidents and further ion diffusion processes

are responsible for the characteristics to be strongly creep-influenced and rate-dependent. Both precise

measurements and efficient hysteresis modeling are therefore essential to understand and predict this so-

phisticated behavior. A common approach to phenomenologically describing the polarization hysteresis are

models based on the Preisach operator. However, one of the main drawbacks of such classical Preisach-

type models is their inability of considering creep in the transfer characteristics of the modeled system as

well as time-dependence of the input signal. Since this is in contrast to real ferroelectric behavior, we focus

here on the characterization of these dynamic phenomena.

2 Measurement

Measurement Principle

The first objective was to characterize the dynamic hysteresis behavior of the investigated material by

means of measurements of the electrical polarization. These measurements have later been used for the

identification of the model parameters. We use a modified Sawyer-Tower circuit [1] for this measuring

task. Thereby, a precision capacitor is connected in series between the lower electrode of the sample and
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Figure 1: Schematic view of the measurement setup.

ground. This measuring capacitance Cm is chosen much higher than the capacitance of the sample, i.e.

Cm ≫ Cpiezo(t). Therefore, the electrical field strength applied to the specimen can be approximated as

Emeas(t) =
Upiezo(t)

l
≈

Upiezo(t) + UC(t)

l
=

UHV(t)

l
=

Umeas(t) · 1000

l
, (1)

with Umeas(t) representing the excitation voltage, directly obtained by the voltage monitor output of the

Trek 10/10B amplifier (Fig. 1). The variable l denotes the distance of the plane-parallel electrodes of the

sample. The challenge is now, how to measure the voltage UC(t) across the capacitance Cm. A very high
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Figure 2: Measured major loops (a) and minor loops (b) for sinusoidal excitation of different frequencies.

input resistance of the measuring unit is required for this task to prevent the capacitor from discharging and

thus distorting the measured signal. We use an impedance converter circuit with an operational amplifier

TL081 (OP1) offering a theoretical input resistance of 1012 Ω. The electric charge QC(t) on the precision

capacitor can therefore be considered as equal to the charge Qpiezo(t) on the electrodes (with surface

area A) of the sample. Thus the polarization is calculated as

Pmeas(t) =
Qpiezo(t)

A
− ε0 · Emeas(t) ≈

UC(t) · Cm

A
− ε0 · Emeas(t). (2)

where ε0 depicts the vacuum permittivity. The sample is placed in an oil bath to prevent from dielectric

breakdown. It is fixed by a spring tip electrode to allow free oscillation (Fig. 1). The excitation signal is

numerically generated and amplified by the high-voltage amplifier Trek 10/10B. Both measured signals,

Umeas(t) and Upiezo(t) are converted to digital signals and evaluated on a measuring computer.
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Measurement Results

The measurements presented in this paper have been performed for discoidal samples out of Pz27, a

soft lead zirconate titanate material manufactured by Ferroperm Piezoceramics A/S. The samples have

a thickness l of 2 mm, a diameter of 25 mm and feature plane-parallel silver electrodes on their front-

faces. In order to investigate the rate-dependence, we applied sinusoidal excitation signals of ten uniformly

(a) (b)

Figure 3: Frequency-dependent polarization energy density (a) and relative differential permittivity (b) for
different maximum field strengths.

distributed frequencies between 0.01 and 0.1 Hz and at four different maximum field strengths (0.7, 1.35,

1.7 and 2.0 kV/mm). Whereas the major loops (2.0 kV/mm, Fig. 2(a)) show significant saturation behavior,

this effect is reduced for loops with lower maximum field strengths. For minor loops (0.7 kV/mm, Fig. 2(b)),

no saturation can be observed at all. As clearly can be seen, the frequency of the input signal is mainly

affecting the coercive field strength of major loops. The dominant influence on minor loops is instead the

polarization amplitude, decreasing with frequency. Figure 3(a) shows the polarization energy density, also

denoted as dissipation energy density. This value is directly related to the self-heating of the sample.

The polarization energy density, calculated as the area inside the hysteresis loop, increases with higher

frequencies for major loops. For minor loops, it is even slightly decreasing with frequency. This indicates

that both, maximum amplitude and the excitation frequency determine the occurrence of domain switching

incidents. The relative differential permittivity εTd,r = ∆P
∆E

· ε0
−1 depicts the slope of the hysteresis close to

remanent polarization, divided by the vacuum permittivity. Its frequency-dependent variation is illustrated

in Fig. 3(b). The relative differential permittivity decreases for all amplitudes of the electrical field with

frequency. This implies that the excitation frequency has a significant influence on the dielectric properties

of the investigated material.

3 Modeling

In our previous work [2, 3, 4, 5], we proposed a phenomenological model for the ferroelectric polarization

hysteresis taking into account the Preisach hysteresis operator H [6]

Pmodel,n(t) = H [En](t) =

∫∫
α≥β

µ(α, β)γαβ [En](t)dαdβ. (3)

The electrical polarization Pmodel,n(t) for a given electrical field En(t) is calculated by superimposing a set

of fundamental switching operators γαβ . These switching operators can only feature two distinct values (-1

and 1), depending on the thresholds α and β. Input and output of the Preisach operator are both normalized

to the maximum value. A significant part of the model is the weight function µ(α, β), mainly affecting the
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shape of the hysteresis loops. Contrary to common approaches [7, 8], we use an analytic weight function

µDAT (α, β) within the model

µDAT (α, β) =
B

1 + {[(α+ β)σ1]2 + [(α− β − h)σ2]2}η
. (4)

Apart from reducing the computational effort, another benefit of such an analytic weight function is the ability

of considering environmental conditions like temperature, pre-stress and dynamic properties. The model

parameters are identified by matching the model output to measurements. A more detailed discussion of

Preisach models in general and about our model can be found in literature [2, 3, 4, 5, 9].

In terms of dynamic hysteresis modeling, creep and rate-dependence have to be treated separately to our

opinion. Both result in a different impact on the shape of the polarization hysteresis loops. We therefore

consider creep by an additional creep operator whereas the rate-dependence is covered by a frequency-

dependent formulation µDAT (α, β, f) of the weight function.

Creep Operator

As discussed in detail in our previous work [5], the investigated piezoceramic material shows an aperiodic

step-response when applying an appropriate step signal of the electrical field. Motivated by this low-pass

characteristics, the creep in the polarization signal is described as the solution of the first-order differential

equation
d

dt
Pcreep,n(t)− αD · (Pn(t)− Pcreep,n(t)) = 0. (5)

The creep-affected polarization signal is thus obtained by applying an additional creep operator D to the
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Figure 4: Minor loop compared to simulation with and without creep operator for αD = 0.03 s−1 (a). Abso-
lute value of transfer function G(jω) of creep operator for αD = 0.03 s−1 (b).

output of the Preisach operator

Pcreep,n(t) = D [Pmodel,n] (t) = D [H [En]] (t) = P0 e
−αD(t−t0) +

t∫

t0

αD e−αD(t−τ)Pmodel,n(τ)dτ, (6)

with the initial value P0 and the creep parameter αD. The enhanced model is compared to the model

without creep operator in Fig. 4(a). The smooth turning points of the minor loops can now be simulated very

well. But obviously, it is not possible to describe the rate-dependent loops as observed in section 2 with

just a single parameter αD. An additional description of the frequency dependence is indispensable. The

absolute value of the transfer function

G(jω) =
Pcreep(jω)

P (jω)
, (7)
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determined for the same αD = 0.03 s−1 as used for the simulation of the creep-dependent minor loop in

Fig. 4(a) is illustrated in Fig. 4(b). It reveals that only very low frequencies have to be considered when

describing the frequency-dependence of hysteresis loops. For higher frequencies, the damping nature of

the creep operator is the dominant phenomenon.

Frequency-dependent Weight Function

The impact of the excitation frequency on measured hysteresis loops has already been described in sec-

tion 2. For major loops, the coercive field strength is mainly affected, whereas the amplitude is also altered
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Figure 5: Measurements of minor loops at different frequencies compared to simulations with frequency-
dependent formulation of weight function. The simulations have been performed with (b) and
without (a) Creep-Operator.

for minor loops. A similar, but linear influence can be observed for simulations with a variation of the pa-

rameter h. This leads to a frequency-dependent formulation of the analytic weight function [10]

µDAT (α, β, f) =
B

1 + {[(α+ β)σ1]2 + [(α− β − (ν1 −
ν2

f ν3
))σ2]2}η

, (8)

where h was replaced by the additional rate-dependent function

h(f) = ν1 −
ν2

f ν3

. (9)

This analytic function directly describes the variation of the measured coercive field strength of major loops

with frequency. In addition, the same function is also mapping the frequency-induced decrease of the

maximum polarization of minor loops (Fig. 6(a)). Simulations, performed with the rate-dependent model are

compared to measurements in Fig. 5(a) and Fig. 6(b). For major loops, the model output fits quite well to

the measurements, apart from the small range, where the polarization reaches saturation. For minor loops,

the resulting sharp edges of the simulated signal lead to significant deviations in the polarization signal

(Fig. 5(a)). The model output for the combination of creep operator and rate-dependent weight function is

displayed in Fig. 5(b). The simulation results for minor loops are improved substantially, if the creep operator

is applied additionally. However, the influence of the creep operator on major loops can be neglected. With

three additional parameters, the dynamic behavior, including creep and rate-dependence is thus described

very well.

4 Conclusion

A model for the simulation of the dynamic polarization hysteresis of ferroelectric actuators was presented.

Simulations, compared to measurements reveal that both, the creep operator and the frequency depen-
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Figure 6: Frequency-dependent coercive field strength Ec(f) for major loops and maximum polarization
Pmax(f) for minor loops - measurement compared to simulations (a). Measurements of major
loops at different frequencies compared to simulations (b).

dent formulation of the weight function are essential to describe the whole dynamic behavior. Whereas

there are still little deviations for major loops close to saturation, the model allows now excellent simulations

of frequency-dependent and creep-influenced minor loops. Thus the dynamic polarization in the working

range of actuators can be simulated with only three additional parameters. Future research is concentrated

on investigating multi-frequent signals by considering the dominant frequencies for the rate-dependent for-

mulation.
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[6] F. Preisach. Über die magnetische Nachwirkung. Zeitschrift für Physik, 94(5-6):277–302, 1935.

[7] T. Hegewald, B. Kaltenbacher, M. Kaltenbacher, and R. Lerch. Efficient modeling of ferroelectric behavior for the

analysis of piezoceramic actuators. Journal of Intelligent Material Systems and Structures, 19:1117–1129, 2008.

[8] M. Kaltenbacher, B. Kaltenbacher, T. Hegewald, and R. Lerch. Finite element formulation for ferroelectric hystere-

sis of piezoelectric materials. Journal of Intelligent Material Systems and Structures, 21:773–785, 2010.

[9] I.D. Mayergoyz. Mathematical Models of Hysteresis and Their Applications. Elsevier, New York, 2003.

[10] F. Wolf, A. Sutor, S. J. Rupitsch, and R. Lerch. Modeling and measurement of creep- and rate-dependent hysteresis

in ferroelectric actuators. Sensors and Actuators A, 2011. Article in Press.

S E N S O R + T E S T C o n f e r e n c e s 2 0 1 1 , S E N S O R P r o c e e d i n g s 3 3 3


