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Summary: 
In machine learning, many feature extraction algorithms are available. To obtain reliable features from 
measured data, a propagation of measurement uncertainty is necessary for these algorithms. In this 
contribution, the Adaptive Linear Approximation (ALA) as one feature extraction algorithm is considered, 
and analytical formulas are developed for an uncertainty propagation in line with the Guide to the 
Expression of Uncertainty in Measurement (GUM). This extends the set of uncertainty-aware feature 
extraction methods, which already contains the discrete Fourier and Wavelet transform.  
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Motivation 
The increasing demand for performance and 
efficiency in Industry 4.0 has led to the growing 
adoption of smart sensors, which allow data 
acquisition combined with internal signal 
processing, e.g., based on machine learning 
(ML). To analyze recorded data and develop 
data based evaluation models, a fully automated 
machine learning toolbox [1] can be used without 
knowledge of any physical process model and 
without expert knowledge. The best combination 
of five complementary methods for feature 
extraction (FE) and three for feature selection 
(FS) is calculated using a simple, but efficient 
classifier and k-fold cross validation for the 
training data set.  
Whenever decisions are based on data, reliable 
data are important. Measurement uncertainties, 
sensor calibration and thus traceability to the SI 
units are the key principles in metrology. To be 
able to evaluate data quality and thus the quality 
of the ML results, it is necessary to consider the 
uncertainty information associated with the 
sensor data, ideally from calibration. However, 
calibrated sensors are seldomly used due to cost 
reasons or because removal and recalibration of 
the sensors may be difficult or even impossible. 
In these cases, information from the data sheets 
of the manufacturers could be used to obtain an 
indication of the data quality in form of a 
measurement uncertainty.  
The available measurement uncertainty 
information associated with the raw sensor data 
then needs to be taken into account in the 

subsequent data processing. However, the 
measurement uncertainty evaluation within the 
above-mentioned software toolbox has been 
neglected so far. To extend the toolbox for 
uncertainty analysis, the uncertainty associated 
with the raw sensor data must be propagated 
through the FE and FS methods. The reduction 
of the number of features is carried out by the FS 
methods. The classification afterwards is carried 
out in two steps: a further dimensionality 
reduction by Linear Discriminant Analysis (LDA) 
followed by the classification itself based on the 
Mahalanobis distance to the class centers. The 
selection and classification methods can use the 
measurement uncertainty information of the 
extracted features or methods of Bayesian 
statistics. It is worth noting that a Bayesian 
approach can also be implemented for FS and 
classification. 
In this contribution, an algorithm for the 
uncertainty propagation in the Adaptive Linear 
Approximation (ALA) is developed in line with the 
Guide to the Expression of Uncertainty in 
Measurement (GUM) [2] and validated using a 
Monte-Carlo simulation corresponding to 
Supplement 2 to the GUM [3]. 

Results 
ALA approximates a signal in linear segments of 
variable length. Mean and slope are extracted for 
each segment as features. The number of 
segments is calculated automatically, depending 
on the tradeoff between number of features and 
approximation error. The calculations for every 
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segment are the same, therefore they are shown 
here only for one segment. 

Let 𝑌𝑌 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) ∈ ℝ1×𝑛𝑛 denote the real-
valued time-domain values of a signal. The result 
of the ALA for 𝑌𝑌 is given by  

𝐹𝐹 = (𝑦𝑦1̅̅̅, … , 𝑦𝑦𝑢𝑢3+1̅̅ ̅̅ ̅̅ ̅, 𝑏𝑏1, … , 𝑏𝑏𝑢𝑢3+1) ∈ ℝ1×2(𝑢𝑢3+1), 
where 𝑦𝑦k̅̅ ̅ denotes the mean value and 𝑏𝑏k the 
slope of the 𝑘𝑘-th segment, respectively. The 
index 𝑢𝑢3 is the number of splits and therefore, 
𝑢𝑢3 + 1 the number of segments into which the 
signal is divided. The mean value and slope for 
the 𝑘𝑘-th segment are determined by 

𝑦𝑦𝑘𝑘̅̅ ̅ = 𝑓𝑓(𝑦𝑦𝑖𝑖) =  1
𝑣𝑣𝑘𝑘+1−𝑣𝑣𝑘𝑘+1

∑ 𝑦𝑦𝑖𝑖𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘    

and  

𝑏𝑏𝑘𝑘 = ℎ(𝑦𝑦𝑖𝑖) =
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑘𝑘̅̅ ̅)𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)2𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘

. 

For the propagation of uncertainties according to 
GUM, the sensitivities of the mapping 𝑌𝑌 ↦ 𝐹𝐹 are 
calculated as 

𝑐𝑐𝑘𝑘,𝑗𝑗 =  𝜕𝜕𝑦𝑦𝑘𝑘̅̅ ̅̅𝜕𝜕𝑦𝑦𝑗𝑗
= 1

𝑣𝑣𝑘𝑘+1−𝑣𝑣𝑘𝑘+1
   

and  

𝑑𝑑𝑘𝑘,𝑗𝑗 =  𝜕𝜕𝑏𝑏𝑘𝑘𝜕𝜕𝑦𝑦𝑗𝑗
= 𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘
∑ (𝑡𝑡𝑖𝑖 − 𝑡𝑡�̅�𝑘)2𝑣𝑣𝑘𝑘+1
𝑖𝑖=𝑣𝑣𝑘𝑘

, 

for 𝑗𝑗 = 𝑣𝑣𝑘𝑘 , … , 𝑣𝑣𝑘𝑘+1, where 𝑣𝑣𝑘𝑘 denotes the index of 
the input quantities at the beginning of a 
segment and 𝑣𝑣𝑘𝑘+1 at the end, respectively. 
These coefficients can be stored in a sensitivity 
matrix 

𝐉𝐉�̅�𝐲,𝐛𝐛
𝐦𝐦 = (𝐂𝐂𝐃𝐃) ∈ ℝ2(𝑢𝑢3+1)×𝑛𝑛, 

where 𝐂𝐂 ∈ ℝ(𝑢𝑢3+1)×𝑛𝑛 denotes the upper 
submatrix with sensitivity coefficients for the 
mean values, and 𝐃𝐃 the lower submatrix with 
sensitivity coefficients for the slopes. The 
covariance matrix 𝐔𝐔 ∈ ℝn×n of the input 
quantities leads to the following expression for 
the covariance matrix 𝐔𝐔𝐅𝐅 ∈ ℝn×n associated with 
𝐹𝐹: 

𝐔𝐔𝐅𝐅 =  𝐉𝐉�̅�𝐲,𝐛𝐛
𝐦𝐦 ⋅ 𝐔𝐔 ⋅ 𝐉𝐉�̅�𝐲,𝐛𝐛

𝐦𝐦 =  (
𝐂𝐂𝐔𝐔𝐲𝐲𝐂𝐂𝐓𝐓 𝐂𝐂𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓

(𝐂𝐂𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓)𝑻𝑻 𝐃𝐃𝐔𝐔𝐲𝐲𝐃𝐃𝐓𝐓) 

The block structure of the covariance matrix 𝐔𝐔𝐅𝐅 
can be used to deal with computer memory 
issues. Since 𝐔𝐔𝐅𝐅 is symmetric, only three blocks 
need to be stored, see also [4].  
Fig. 1 shows the features for one signal and the 
validation of the features with a Monte Carlo 
simulation with 1.000.000 trials. The comparison 
of the GUM2ALA to the Monte Carlo results 
shows that the features and their associated 
uncertainties are the same for both approaches. 
However, the application of a Monte Carlo 

simulation is much more time-consuming. 
Furthermore, a straightforward implementation 
of the Monte Carlo simulation is in most cases 
not feasible for standard computers due to the 
amount of computer memory required. 

 
Fig. 1: Mean (top) and slope (bottom) as features 
for one cycle divided into 10 sections, calculated by 
the GUM2ALA algorithm (left) and validated by a 
Monte-Carlo simulation with 106 runs (right). 

Outlook 
After extending the approach to all FE methods 
in the toolbox, the feature uncertainty will be 
considered in the FS and classification steps for 
improving the stability and performance of the 
automated ML toolbox.  
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