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Summary: 

Deep learning has become a powerful tool of data analysis with applications in such different areas as 
medical imaging, language processing or autonomous driving. Recently, deep learning techniques 
have also been applied to an inverse problem in optical form measurement. In a proof-of-principle 
study it was shown that an accurate solution of the inverse problem can be achieved by a deep neural 
network that is trained on a large data base. This work augments the developed method with a quanti-
fication of its uncertainty by considering an ensemble of networks. The approach is tested using virtual 
experiments with known ground truth. 
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Motivation 
Deep learning techniques have already been 
successfully used in many different domains 
such as medical imaging quality assurance [4], 
natural language processing [8] or autonomous 
driving [2]. In this study deep learning is applied 
to computational optical form measurements. 
The goal is to extend the deep learning approach 
proposed in [3] by quantifying the uncertainty as-
sociated with predictions made by a trained net-
work ensemble. 

Deep neural networks are neural networks with 
many hidden layers. Each layer consists of neu-
rons, which are connected to the previous layer 
through a linear combination of its neurons and 
an additional bias. The nonlinear behavior of the 
network results from a nonlinear activation func-
tion per layer. The architecture can get arbitrarily 
deep by adding more layers, which makes neural 
networks a powerful tool to emulate highly com-
plex functions. Fig. 1 shows an example of a 
deep neural network architecture. It has three in-
put neurons, two output neurons and several hid-
den layers. The network parameters can be op-
timized via gradient-descent techniques using 
backpropagation by minimizing a chosen loss 
function on given training data. A common prob-
lem with deep learning models is their black-box 
behavior. In general, it is not possible to under-
stand why the network made a certain prediction 
which challenges the trust in its prediction. Dif-
ferent techniques have been developed to tackle 
this problem, for example by using the Fisher in-

formation [5]. In this work we focus on estimating 
the uncertainties of the network predictions.  

The continuous technological advancements im-
ply a growing relevance of accurate measure-
ment techniques. The deep learning application 
here is based on the tilted-wave interferometer 
(TWI) [1]. The TWI is a highly accurate measure-
ment technique for the reconstruction of optical 
aspheres and freeform surfaces using contact-
free interferometric measurements. Topogra-
phies are reconstructed by solving a numerically 
expensive inverse problem from the measured 
intensity images using a numerical model for the 
wave propagation through the optical system.  

Methods 
A database of virtual measurement results has 
been constructed using the simulation toolbox 
SimOptDevice [7]. First, the test topographies 
were generated by adding randomly chosen dif-
ference topographies to a specified design. 
Then, the optical path length differences were 
calculated by the simulation toolbox. The task of 

Fig. 1: Example of a deep network architecture. 
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the inverse problem is to reconstruct a topogra-
phy deviation from the corresponding deviations 
of optical path length differences. Fig. 2 shows 
an example of a data sample consisting of a test 
topography deviation and the corresponding dif-
ferences of optical path length differences. The 
quantity and quality of the data have an essential 
impact on the network performance, especially 
considering its generalization capability. The 
constructed data base consists of 40,000 test to-
pographies (one channel output of the network), 
together with the corresponding optical path 
length differences (four channel input of the net-
work) for training. A disjoint set was generated 
containing  2,000 randomly generated samples 
for testing. The generated data are very diverse 
ranging from a root mean squared deviation of 
20nm to several μm.  

A U-Net architecture [6] was chosen to solve the 
inverse problem of reconstructing the test topog-
raphy deviations from the optical path length dif-
ferences. The U-Net is a deep neural network 
with bottleneck structure and skip-connections 
and has been already successfully applied in 
various computational imaging tasks. It is desir-
able to have an idea of the trustworthiness of in-
dividual network predictions in addition to the 
overall accuracy on a test set. A relevant quantity 
in this context is the uncertainty of an output gen-
erated by the network. Uncertainty quantification 
was realized by learning an ensemble of net-
works and computing its standard deviation per 
output pixel. The ensemble prediction is given as 
the mean of the different network predictions. 

Results and Conclusion 
The topography deviations were predicted to-
gether with their corresponding uncertainties 
from the optical path length differences in the 
test set after having trained the ensemble of U-
Nets on the disjoint training set. Some results are 
shown in Fig. 3. More precisely, the profiles of 
some reconstructed topography deviations are 
shown together with their uncertainties and the 
known ground truth. The obtained results show 
that the estimated uncertainties cover the errors 
of the prediction. Furthermore, the root mean 
squared error of the predictions is an order of 
magnitude smaller than the variability of the 

topography deviations within the test set. The 
median error is even less.  

We conclude that deep learning can be 
successfully applied in the context of 
computational optical form measurement, as-
suming ideal measurement conditions. 
Uncertainty quantification in terms of an 
ensemble of networks yields a reliable 
uncertainty characterization of network 
predictions. Comparing the proposed approach 
to the conventional method [1] as well as 
incorporating calibration errors and testing on 
real measurements are referred to future work.  
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Fig. 2: Example of a data sample consisting of a) a 
test topography deviation and b) the corresponding 
differences of optical path length differences. Fig. 3: Profile plots of the ensemble results on random 

test data. The prediction with uncertainty interval is 
shown in blue and the underlying ground truth in red. 
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