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Summary:

The combined evaluation of the thermal and electrical domain of a pyroelectric system is a challenging
task. The proposed approach precisely models the thermal system with FEM. The output data is ap-
proximated with a fit function and transferred to SPICE creating a universal and adaptable model for the
whole pyroelectrical signal chain. For validation, the InfraTec detector LRM-244 is used.
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Motivation

Pyroelectric detectors are used for high-perfor-
mance contactless gas analysis and fast flame
detection. To accelerate the design and develop-
ment process of improved detectors with new
materials or geometry, a precise and customiza-
ble model is needed. The main dependencies of
the generated pyroelectric current I, are the
pyroelectric coefficient p of the material, the ef-
fective surface A and the time derivation of the
temperature change d7/dt shown in Eq. (1).

Eq. (1)

The prediction of the temperature behavior is a
challenging task. Specifically, the transfer of the
temperature data to the electrical domain in or-
der to evaluate the resulting pyroelectric current
and output voltage are an open problem.

The contribution of this paper is an optimized ap-
proach to model the signal behavior of pyroelec-
tric detectors regarding the whole signal chain
from the incident thermal radiation to the electri-
cal output signal. The method can be used for
any detector geometry, pyroelectric material,
and electrical readout circuit.

dr
Ipyr0=p'A'E

Thermal System

Often, the thermal behavior is modeled by a sim-
ple low-pass consisting of a thermal resistance
Rin (K/IW) and a thermal capacitance C (J/K). An
analytical method is to solve the equation for the
one-dimensional thermal conduction, by which
the temporal and additionally spatial resolution
can be analyzed [1].

A more precise approach uses several RC-ele-
ments building the dominating conducting paths
of a thermal system, which can be connected like

a possibly multidimensional Cauer or Foster lad-
der as shown in Fig. 1. Note that inaccuracies of
this model can occur due to the limited number
of lumped RC-elements [2].
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Fig. 1: Foster- (left) and Cauer (right) ladder of a sim-
ple thermal system

The most precise solution is achieved by using a
software with the finite-element-method (FEM).
Moreover, any detector shape can be modeled
fast with CAD. It is helpful to define an interface
between the thermal and electrical subdomains,
as the calculation of a multiphysics problem with
FEM needs much setup and computing effort.

Therefore, we simulate the thermal system with
the FEM-tool COMSOL Multiphysics™. The py-
roelectric detector LRM-244 of InfraTec serves
as demonstration example. It is sufficient to
model the sensor chip, the absorption layer, the
optical filter, glue dots, the gold coated chip
holder and a small part of the circuit board sur-
rounded by air, illustrated for one signal channel
in Fig. 2. We noticed further details can be ne-
glected.
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Fig. 2: FEM model of LRM-244 with the thermal dom-
inating parts. The surrounding air block is hidden.
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The input signal is modeled as thermal flux with
the property “thermal perturbation” and fed into
the absorption layer. The outer faces of the cir-
cuit board are kept at ambient temperature. As
result the temperature change AT(f) of the pyro-
electric material depending on discrete steps of
the excitation frequency can be investigated.

Thermal-electrical Interface

The next step is to fit a continuous regression
function A(s) to the simulated discrete behavior
AT(f). Simplified pyroelectrical systems have two
dominating thermal time constants, depending
on the sensitive material itself 7, and the absorp-
tion layer 12. They each can be described by a
classical first order low-pass in Laplace notation
with the complex frequency parameter s. Be-
sides, there can be deviations from a typical low-
pass behavior due to a special detector geome-
try or additional material layers. That is why A(s)
in Eq. (2) is extended by the terms containing 73
and 14 to support the precise evolving of the re-
gression function.

A(s) =v ! !

1+s'T3
1+s'7t1 1+s5'T2 14574

Eq. (2)

Here, the variable v is a linear conversion factor
considering the used incident radiation flux of
1 W/m? in FEM. The parameters of A(s) are cal-
culated by a function of SciPy using the least-
square-method. A weigh function is imple-
mented to ensure a small relative error over the
relevant frequency range from typically
0,1Hz ... 1 kHz.

Figure 3 shows the fit function of the thermal sys-
tem compared to a simple first order low-pass
with 1, = 150 ms. Especially at higher modulation
frequencies, the relative error between simula-
tion and fit stays below 0,5 % for f < 10 kHz.

Thermal Simulation and Fit of LRM-244
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Fig. 3: Comparison of the discrete simulation data,
continuous fit function and a first order low-pass

Simulation of the Pyroelectrical System

The thermal fit function A(s) can be transferred
to a circuit analysis program like LTSpice using
an arbitrary behavioral voltage source V4. Refer-
ring to Eq. 1, the time derivate of the temperature
change can be simulated using V2. Finally, a volt-
age dependent current source /1 with the gain
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factor “p-A” generates the frequency dependent
pyroelectric current for an input radiation &(t).
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Fig. 4: Signal chain of the pyroelectrical system

The current Ip(f) is fed into an electrical amplifi-
cation circuit. For the LRM-244, a transimped-
ance amplifier with 100 GQ feedback is used.

Model Validation

The results of the novel approach are demon-
strated in Fig. 5. The relative errors of noise and
relative amplitude between simulation and
measurement are typically below 10 % and devi-
ations mostly depend on the thermal and electri-
cal component tolerances.
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Fig. 5: Noise (left) and amplitude (right) characteristic
of LRM-244 compared to the measured signals

The following table shows the results of an ab-
solute signal simulation compared to a measure-
ment with a lab setup and blackbody emitter
(500 K, 10 Hz, no filter).

Intensity Simulation | Measurement Rel. Error
3,26 W/m? 1,15 Vims 1,27 Vims 9,4 %
Conclusion

The proposed new model for pyroelectric sys-
tems offers a fast and precise prediction of the
signal and noise behavior of any detector geom-
etry. Both the thermal and the electrical system
can be largely adapted and combined with arbi-
trary material parameters. Even in early stages
of the design process, the frequency dependent
signal-to-noise-ratio (SNR) and the specific de-
tectivity D* can be assessed and optimized.
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