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Summary: 
Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the clas-
sical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we report on the 
extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated 
spatially structured heating using high power lasers. In a second post-processing step, several measurements are 
coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in 
the sample. 
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Introduction 
Photothermal super resolution (SR) is based on a 
combination of an experimental scanning strategy and 
a numerical optimization, which has been proven to be 
superior to standard thermographic methods in the 
case of one-dimensional linear defects. Due to com-
plexity constraints, laser scanning SR techniques 
have been mostly limited to evaluation of one-dimen-
sional defect patterns and/or small Regions of Interest 
(ROI) [1, 2, 3]. Extending the SR problem to more di-
mensions significantly increases the amount of meas-
urement data and the number of measurements re-
quired to achieve sufficient defect resolution to cover 
large areas. With the incorporation of a limited number 
of priors, such as a sparse representation of the defect 
density, and with a purposeful exploitation of the 
sparse nature of the underlying physical models, the 
increased complexity can be made manageable. 

Methods 
The surface temperature of a thin plate exposed to a 
heating 𝑄𝑄 with spatial structure 𝐼𝐼𝑥𝑥,𝑦𝑦 and temporal 
structure 𝐼𝐼𝑡𝑡 can be described by: 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0, 𝑡𝑡) = 𝑇𝑇0 + Φ𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)  ∗𝑥𝑥,𝑦𝑦  𝑎𝑎(𝑥𝑥, 𝑦𝑦) (1) 

Φ𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =  2 ⋅ Q
𝑐𝑐𝑝𝑝𝜌𝜌(4𝜋𝜋𝜋𝜋𝑡𝑡)3 2⁄ ⋅ 𝑒𝑒−

(𝑥𝑥−𝑥𝑥)2+(𝑦𝑦−�̂�𝑦)2
4𝛼𝛼𝑡𝑡

⋅ ∑ 𝑅𝑅2𝑛𝑛+1 𝑒𝑒−
(2𝑛𝑛𝑛𝑛)2
4𝛼𝛼𝑡𝑡

∞

𝑛𝑛=−∞
 ∗𝑡𝑡 𝐼𝐼𝑡𝑡(𝑡𝑡) 

(2) 

𝑎𝑎(𝑥𝑥, 𝑦𝑦) = 𝑎𝑎0(𝑥𝑥,𝑦𝑦)  ∗𝑥𝑥,𝑦𝑦  𝐼𝐼𝑥𝑥,𝑦𝑦(𝑥𝑥, 𝑦𝑦) (3) 

where 𝑇𝑇0 denotes the initial system temperature, 𝜌𝜌 the 
mass density, 𝑐𝑐𝑝𝑝 the specific heat, 𝜋𝜋 the thermal diffu-
sivity, (�̂�𝑥, �̂�𝑦) the coordinates of the centroid of the ex-
citation, 𝑅𝑅 the thermal wave reflexion coefficient 
(𝑅𝑅 ≈ 1), 𝑑𝑑 the plate thickness and 𝑎𝑎0 the heat source 
distribution. The operators ∗𝑥𝑥,𝑦𝑦 , ∗𝑡𝑡 represent the con-
volution operator in the indicated dimensions [2].  

The spatial and temporal dimensions can be discre-
tized as follows: 
𝑥𝑥𝑖𝑖 = 𝑖𝑖 ⋅ Δ𝑥𝑥,   𝑦𝑦𝑗𝑗 = 𝑗𝑗 ⋅ Δ𝑦𝑦,   𝑡𝑡𝑘𝑘 = 𝑘𝑘 ⋅ 𝑓𝑓𝑐𝑐𝑚𝑚𝑚𝑚−1  (4,5,6) 

𝑖𝑖 ∈ { 1, … ,𝑛𝑛𝑥𝑥}, 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑦𝑦}, 𝑘𝑘 ∈ {1, … ,𝑛𝑛𝑡𝑡} 

A series of 𝑚𝑚 ∈ { 1, … ,𝑛𝑛𝑚𝑚} independent measure-
ments can be described by: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑘𝑘 ,𝑚𝑚] = 𝑇𝑇0 + 𝑇𝑇𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑘𝑘 ,𝑚𝑚] (7) 

with 𝑇𝑇0 representing the initial temperature of the sam-
ple at 𝑡𝑡 = 0 s and 𝑇𝑇𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑 being the differential tempera-
ture caused by thermal excitation. 
In order to reduce the problem complexity, the time 
dimension can be eliminated by choosing a timestep 
𝑡𝑡 = 𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 and only take the temperature change with 
respect to 𝑇𝑇0 further into account: 
𝑇𝑇𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑘𝑘 ,𝑚𝑚] =  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 ,𝑚𝑚] − 𝑇𝑇0 (8) 

The spatial dimensions can then be merged by flatten-
ing to a single dimension 𝑟𝑟, applying a bijective trans-
form assigning an index 𝑛𝑛 ∈ {1, … ,𝑛𝑛𝑦𝑦 ⋅ 𝑛𝑛𝑥𝑥} to every 
pixel coordinate [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗]: 

𝑇𝑇 𝑟𝑟[𝑛𝑛,𝑚𝑚] = 𝑇𝑇𝑛𝑛𝑖𝑖𝑑𝑑𝑑𝑑[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗 ,𝑚𝑚]   (9)         

[𝑖𝑖, 𝑗𝑗]n = [⌊𝑛𝑛 − 1
𝑛𝑛𝑦𝑦

⌋ + 1,𝑛𝑛 − ⌊𝑛𝑛 − 1
𝑛𝑛𝑦𝑦

⌋  𝑛𝑛𝑦𝑦]  (10) 

The inverse transform of Eq. (10) can be applied to 
reshape the data back to a two-dimensional image. 
As an approximative model, the defect response can 
be defined as the convolution of the thermal PSF as a 
Green’s function kernel and the heat source distribu-
tion 𝑎𝑎𝑟𝑟[𝑛𝑛,𝑚𝑚] [4]: 

Φ𝑃𝑃𝑃𝑃𝑃𝑃,𝑟𝑟[𝑛𝑛] ∗𝑛𝑛 𝑎𝑎𝑟𝑟[𝑛𝑛,𝑚𝑚]  =  𝑇𝑇 𝑟𝑟[𝑛𝑛,𝑚𝑚] (11) 

The single measurement solutions can then be 
merged by summation.  

𝑎𝑎𝑟𝑟𝑚𝑚𝑐𝑐[𝑛𝑛] = ∑ 𝑎𝑎𝑟𝑟[𝑛𝑛,𝑚𝑚]
𝑚𝑚

 (12) 
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To efficiently solve Eq. (11), it can be transformed to 
a multiplicative problem by introducing the discrete 
convolution matrix h(Φ𝑃𝑃𝑃𝑃𝑃𝑃) , such that:

ℎ(Φ𝑃𝑃𝑃𝑃𝑃𝑃,𝑟𝑟
m )  ⋅ 𝑎𝑎𝑟𝑟𝑚𝑚 =   [

0
𝑇𝑇𝑟𝑟𝑚𝑚
0
] = 𝑇𝑇𝑟𝑟0𝑚𝑚 (13)

with dimensions Φ𝑃𝑃𝑃𝑃𝑃𝑃,𝑟𝑟
m ∈ ℝ𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦, ℎ(Φ𝑃𝑃𝑃𝑃𝑃𝑃,𝑟𝑟) ∈

ℝ2𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦−1 × 𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦 and 𝑇𝑇𝑟𝑟0𝑚𝑚 ∈  ℝ2𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦−1 . The convolution 
matrix ℎ is a sparse lower triangular matrix with
Toeplitz-structure, allowing it to be stored memory-ef-
ficient despite its large dimensions.
This leads to solving 𝑛𝑛𝑚𝑚 multiplicative inversion prob-
lems. In order to be able to exploit the joint sparsity
between measurements in all 𝑛𝑛𝑚𝑚 equations, they 
need to be solved simultaneously. This can be 
achieved by stacking:

𝐻𝐻 ⋅ 𝐴𝐴 = [
ℎ 0 0
0 ⋱ 0
0 0 ℎ

] ⋅ [
𝑎𝑎𝑟𝑟1
⋮

𝑎𝑎𝑟𝑟𝑛𝑛𝑚𝑚
] = [

𝑇𝑇𝑟𝑟01
⋮

𝑇𝑇𝑟𝑟0
𝑛𝑛𝑚𝑚

] = 𝑇𝑇𝑅𝑅0 (14)

with dimensions 𝐻𝐻 ∈ ℝ(2𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦−1)⋅𝑛𝑛𝑚𝑚 ×𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦⋅𝑛𝑛𝑚𝑚, 𝐴𝐴 ∈
ℝ𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦⋅𝑛𝑛𝑚𝑚 and 𝑇𝑇𝑅𝑅0𝑚𝑚 ∈  ℝ(2𝑛𝑛𝑥𝑥⋅𝑛𝑛𝑦𝑦−1)⋅𝑛𝑛𝑚𝑚 . 𝐻𝐻 is a sparse di-
agonal block matrix, which makes it efficient to store.
To enhance sparsity even further, a threshold to 𝐻𝐻 is
applied where 𝐻𝐻 < 10−6 = 0.
Since all measured data is prone to noise and due to 
the ill-posed nature of the problem, 𝐻𝐻 can not be in-
verted easily. Therefore the “Blocksoft” regularization 
method is applied [5]:

min
𝐴𝐴

1
2 ‖H A − 𝑇𝑇𝑅𝑅0‖22 + 𝜆𝜆21‖𝐴𝐴‖2,1 + 𝜆𝜆2‖𝐴𝐴‖2 (15)

Where ‖𝐴𝐴‖2,1 denotes the L2,1-norm ‖𝐴𝐴‖2,1 =

∑ √∑ 𝐴𝐴𝑛𝑛𝑚𝑚
2

𝑛𝑛𝑚𝑚 and 𝜆𝜆21, 𝜆𝜆2 are free regularization pa-
rameters. This L2,1-norm couples the single measure-
ments to achieve super resolution. Eq. (15) can be
solved for 𝐴𝐴 iteratively with the ADMM algorithm [6].

Results
To test the performance of the proposed algorithm we 
have examined a purpose made sample with blind 
structured heating. For this a diode laser with a wave-
length of 940 nm and a total output power of 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
500 W has been utilized while measuring the sample 
surface temperature with an IR camera ImageIR 9300
with a framerate of 𝑓𝑓𝑐𝑐𝑡𝑡𝑚𝑚 = 100 Hz and a spatial reso-
lution of Δx,Δ𝑦𝑦 = 60 µm.

Fig. 1. Schema depicting the experimental setup for 
active thermography measurements with laser excita-
tion in reflection configuration
The sample under investigation has been additively 
manufactured from 316L stainless steel 
(𝛼𝛼 = 3.76 ⋅ 10−6 m2

s , 𝜌𝜌 = 7950 kg
m3 , 𝑐𝑐𝑝𝑝 = 502 J

kg K) and
features several cubical defect pairs 0.5 mm beneath

the front surface. Each defect has an edge length of 
2 mm with decreasing distances within the pairs.
220 blind measurements with randomly sampled exci-
tation positions across the ROI with a laser power of 
𝑃𝑃 = 15 W, a pulse duration of 𝑡𝑡𝑡𝑡𝑛𝑛 = 0.2 s and a laser 
spot size of 𝑑𝑑𝑠𝑠𝑝𝑝𝑡𝑡𝑡𝑡 = 1.5 mm have been conducted. Ap-
plying our previously described 2D-SR evaluation 
technique, the resulting defect reconstruction 𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐 is 
displayed in Fig. 2.

Fig. 2 Resulting defect density a𝑟𝑟𝑟𝑟𝑐𝑐(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗) from solving 
Eq. (15) with an ADMM penalty 𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 16, 𝜆𝜆21 =
375,  𝜆𝜆2 = 20 for 𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑡𝑡 = 0.3 s. The green boxes indi-
cate the defect position and sizes. All defects and 
even close defect spacings up to 0.5 mm are resolved.

For reference, a single measurement with homoge-
nous illumination across the sample surface has been 
performed. The measured data is shown in Fig. 3.

Fig. 3. Thermogram for full area homogeneous illumi-
nation for reference. 𝑃𝑃 = 450 W, 𝑡𝑡𝑡𝑡𝑛𝑛 = 0.5 s sampled 
at 𝑡𝑡𝑟𝑟𝑒𝑒𝑡𝑡𝑡𝑡 = 0.5 s. All defects are clearly visible but closer 
defects cannot be resolved independently.
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