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Summary:

Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the clas-
sical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we report on the
extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated
spatially structured heating using high power lasers. In a second post-processing step, several measurements are
coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in

the sample.
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Introduction

Photothermal super resolution (SR) is based on a
combination of an experimental scanning strategy and
a numerical optimization, which has been proven to be
superior to standard thermographic methods in the
case of one-dimensional linear defects. Due to com-
plexity constraints, laser scanning SR techniques
have been mostly limited to evaluation of one-dimen-
sional defect patterns and/or small Regions of Interest
(ROI) [1, 2, 3]. Extending the SR problem to more di-
mensions significantly increases the amount of meas-
urement data and the number of measurements re-
quired to achieve sufficient defect resolution to cover
large areas. With the incorporation of a limited number
of priors, such as a sparse representation of the defect
density, and with a purposeful exploitation of the
sparse nature of the underlying physical models, the
increased complexity can be made manageable.

Methods

The surface temperature of a thin plate exposed to a
heating @ with spatial structure I, and temporal
structure I; can be described by:

Treas(%,y,2 = 0,t) = Ty + Ppgp(x,y,t) *x,y a(x,y) @)
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where T, denotes the initial system temperature, p the
mass density, c, the specific heat, a the thermal diffu-
sivity, (%,9) the coordinates of the centroid of the ex-
citation, R the thermal wave reflexion coefficient
(R =~ 1), d the plate thickness and a, the heat source
distribution. The operators =, ,,, *, represent the con-
volution operator in the indicated dimensions [2].
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The spatial and temporal dimensions can be discre-
tized as follows:

xp=1-Dx, yj=j-Ay, tx =k fam (4,5,6)
ie{l,..,n.} jE {1, ...,ny}, kefl,..,n}

A series of me{1,..,n,} independent measure-
ments can be described by:

Tmeas| X0 Vj» tiom]| = To + Taips[xi vj tiom] (7)

with T, representing the initial temperature of the sam-
ple at t = 0 s and Ty;¢; being the differential tempera-
ture caused by thermal excitation.

In order to reduce the problem complexity, the time
dimension can be eliminated by choosing a timestep
t = toyq and only take the temperature change with
respect to T, further into account:

Tairrlx Yoo m] = Teas[x,y,t = teya,m] =T (8)

The spatial dimensions can then be merged by flatten-
ing to a single dimension r, applying a bijective trans-
form assigning an index n € {1, Y nx} to every
pixel coordinate [x;, y;]:

T, [Tl, m] leff [xl' Yj,m (9)
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The inverse transform of Eq. (10) can be applied to
reshape the data back to a two-dimensional image.
As an approximative model, the defect response can
be defined as the convolution of the thermal PSF as a
Green’s function kernel and the heat source distribu-
tion a,.[n, m] [4]:

Dpgrr [n] *, ay[n,m] = T,[n,m] (11)

The single measurement solutions can then be
merged by summation.

Arecn] = Z ar[n,m] (12)
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To efficiently solve Eq. (11), it can be transformed to
a multiplicative problem by introducing the discrete
convolution matrix h(®psr) , such that:

0
h(q)glsar) apt = [Trm] =Ty (13)
0
with  dimensions @&, € R™™,  h(Ppgp,) €

RZxMy=1 X0y gnd T/ € R2™y~1, The convolution
matrix h is a sparse lower triangular matrix with
Toeplitz-structure, allowing it to be stored memory-ef-
ficient despite its large dimensions.

This leads to solving n,, multiplicative inversion prob-
lems. In order to be able to exploit the joint sparsity
between measurements in all n,, equations, they
need to be solved simultaneously. This can be

achieved by stacking:
I \ [ =Tgo  (14)
nm

h 0 O
with dimensions H € R@wmy-Dnmmxnenynm 4 ¢
Ry and T/ € RGmy=Umm s a sparse di-
agonal block matrix, which makes it efficient to store.
To enhance sparsity even further, a threshold to H is
applied where H < 107 = 0.

Since all measured data is prone to noise and due to
the ill-posed nature of the problem, H can not be in-
verted easily. Therefore the “Blocksoft” regularization
method is applied [5]:

H- A=

00h

1
HHHEHHA_TROH%+/121||A||2,1 + 22114l (15)

Where [|All,; denotes the Lzi-norm ||All,, =

Ym /ZnA;"Z and 1,,, 4, are free regularization pa-

rameters. This L2 1-norm couples the single measure-
ments to achieve super resolution. Eq. (15) can be
solved for A iteratively with the ADMM algorithm [6].

Results

To test the performance of the proposed algorithm we
have examined a purpose made sample with blind
structured heating. For this a diode laser with a wave-
length of 940 nm and a total output power of P;y¢q; =
500 W has been utilized while measuring the sample
surface temperature with an IR camera ImagelR 9300
with a framerate of f.,,,, = 100 Hz and a spatial reso-
lution of Ax, Ay = 60 pm.
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Fig. 1. Schema depicting the experimental setup for
active thermography measurements with laser excita-
tion in reflection configuration

The sample under investigation has been additively
manufactured from 316L stainless steel

(€=376-10", p=7950"%, ¢, = 502.1) and
features several cubical defect pairs 0.5 mm beneath
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the front surface. Each defect has an edge length of
2 mm with decreasing distances within the pairs.

220 blind measurements with randomly sampled exci-
tation positions across the ROI with a laser power of
P =15 W, a pulse duration of t,,, = 0.2's and a laser
spot size of dgp,, = 1.5 mm have been conducted. Ap-
plying our previously described 2D-SR evaluation
technique, the resulting defect reconstruction a,.. is
displayed in Fig. 2.
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Fig. 2 Resulting defect density a,..(x;, y;) from solving

Eq. (15) with an ADMM penalty pipum = 16, 151 =

375, A, = 20 for t,,q = 0.3s. The green boxes indi-

cate the defect position and sizes. All defects and

even close defect spacings up to 0.5 mm are resolved.

For reference, a single measurement with homoge-
nous illumination across the sample surface has been
performed. The measured data is shown in Fig. 3.
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Fig. 3. Thermogram for full area homogeneous illumi-

nation for reference. P = 450 W, t,, = 0.5 s sampled

att.,q1 = 0.5 s. All defects are clearly visible but closer

defects cannot be resolved independently.
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