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Summary: 
Uncertainty assignment for measurement values is a common process for single sensors, but this pro-
cedure grows in complexity for sensor networks. Often measured values are processed further in such 
networks and uncertainty must be evaluated for virtual values. A simple example is the fusion of homo-
geneous values and faulty or drifting sensors can harm the virtual value. We introduce a method from 
the field of key-comparison into the domain of sensor fusion. The method is evaluated in three different 
scenarios within an agent-framework. 
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Motivation 
Sensors always have some degree of uncer-
tainty in the values they provide. This uncertainty 
can be related to time and/or measurement. As 
the number of sensors increase, for example in 
cases of large sensor networks, the accumu-
lated uncertainty grows as well. In our previous 
work [1] uncertainty propagation was part of the 
use cases described, in particular within the con-
text of sensor fusion. Sensor fusion is the com-
bination of sensory data such that the resulting 
information is better than those obtained from in-
dividual sensors [2]. Sensor fusion is especially 
important for capturing industrial processes in 
the form of a digital twin. In our project FA-
MOUS1, digital twins are virtual representations 
of sensors and sensor networks in the fields of 
discrete manufacturing and process engineer-
ing. There is plethora of literature that use statis-
tical and stochastic models to address uncer-
tainty in sensor fusion [3, 4, 5, 6]. This paper pre-
sents methods to reduce the effect of failing/drift-
ing sensors and evaluates the uncertainty [7] in 
sensor fusion by drawing parallels to key com-
parison methods in metrology [8]. 

Uncertainty-Aware Sensor Fusion 
The propagation of uncertainties is evaluated ac-
cording to the formalism of the Guide to the ex-
pression of uncertainties (GUM) [9]. Suppose 𝑁𝑁 

 
1 http://famous-project.eu/ 

independent measurements 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 are taken 
by sensors and the corresponding uncertainties 
𝑢𝑢(𝑥𝑥𝑖𝑖) are known from datasheets. It is of interest 
to combine these values into a fused value 
𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and evaluate the uncertainty of that using 
Eq. 1 and Eq. 10 from GUM. A naive approach 
would use a weighted mean with weights 
𝛾𝛾𝑖𝑖 = 1

𝑢𝑢(𝑥𝑥𝑖𝑖)2
 . With 𝑘𝑘 = ∑ 𝛾𝛾𝑖𝑖 

𝑖𝑖∈𝐼𝐼𝑐𝑐  this results in 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1
𝑘𝑘∑𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖

 

𝑖𝑖∈𝐼𝐼𝑐𝑐

 

u(yfusion)2 = ∑(𝛾𝛾𝑖𝑖𝑘𝑘)
2
𝑢𝑢(𝑥𝑥𝑖𝑖)2

 

𝑖𝑖∈𝐼𝐼𝑐𝑐

 

The presented homogenous sensor fusion is 
structurally similar to key comparisons in metrol-
ogy. We therefore take a method developed by 
Cox [9] to calculate a more informed fusion 
value. The procedure uses the same weighted 
mean as our naive choice but extends it by a 𝜒𝜒2-
test to detect outliers. If outliers are detected, the 
fusion value is recalculated.  

Implementation Details 
Sensors, sensor datasheet information and sen-
sor fusion are represented as agents within an 
agent-framework suited for metrological infor-
mation processing2. Raw sensor data is simu-
lated and fed into the datasheet agent. There, 

2 https://github.com/bang-
xiangyong/agentMET4FOF 
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the sensor value is transformed into an SI-unit 
and uncertainty information is added based on 
the datasheet. Thereafter, a uniform disturbance 
is added based on the given uncertainty and the 
uncertainty is recalculated for the disturbed sen-
sor reading. The simulated sensor is an acceler-
ation sensor of type LIS3DH3. Sensor readings 
are provided in multiples of earth’s gravitational 
“constant” 𝑔𝑔. Conversion to an SI-unit is neces-
sary. Uncertainty assignment considers variation 
of gravitation across the earth, non-linearity off-
set error and ADC-conversion.  

𝑥𝑥𝑆𝑆𝑆𝑆 = 𝑎𝑎 ∗ (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏) 

𝑢𝑢(𝑥𝑥𝑆𝑆𝑆𝑆)2 = (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑏𝑏)2 ∗ 𝑢𝑢𝑎𝑎2 + 𝑎𝑎2 ∗ (𝑢𝑢𝑏𝑏2 + 𝑢𝑢𝑥𝑥2) 

If operated at range ±4𝑔𝑔 with 10bit resolution: 

𝑎𝑎 = 9.81 𝑚𝑚𝑠𝑠2 𝑏𝑏 = 0 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ∈ [−4, 4] 

𝑢𝑢𝑎𝑎 =  0.025 𝑚𝑚𝑠𝑠2 𝑢𝑢𝑏𝑏 = 0.08 𝑢𝑢𝑥𝑥 = 0.5 ∗ 8
210 

Scenarios 
We chose three scenarios to evaluate different 
methods for sensor fusion in networks. We use 
in every scenario eight sensors that propagate 
their values to a virtual sensor that aggregates 
the incoming measurement values and uncer-
tainties to a new virtual value. The incoming sig-
nal is a sinusoidal function of the time t. In the 
first scenario all sensors work as intended. In the 
second scenario, one of the sensors fails after 
10 𝑠𝑠 and returns a faulty value of 0 𝑚𝑚/𝑠𝑠2 for 
every following measurement. The third scenario 
simulates a sensor that starts drifting after 5 𝑠𝑠. 
The drift increases linearly for the next 10 𝑠𝑠 
where it remains till the end of the scenario. 

Evaluation 

Fig. 1 compares both presented methods for the 
drift scenario. The naive approach shows a 
smaller uncertainty throughout the simulation but 
is also strongly biased by the drifting sensor. The 
advanced method by Cox matches the lower un-
certainty of the simple method during normal op-
eration of all sensors but adopts a more robust 
behavior in case of sensor drift – at the cost of a 
higher uncertainty value of that result.  

Conclusion and Future Work 
By taking a known methodology from the field of 
metrology we can provide robust and uncer-
tainty-aware sensor fusion for homogenous sen-
sor networks. Comparing an informed fusion to 
a rather naive approach shows robust behavior 
in two anomalous scenarios. Furthermore, the 
fusion values are assigned a higher uncertainty, 

 
3 https://www.st.com/re-
source/en/datasheet/lis3dh.pdf 

if fewer sensors contribute to it (due to outlier re-
moval).  

 
Fig. 1. Comparison of the naive and informed fusion 
methods with a single drifting sensor. Bands of uncer-
tainties are exaggerated by factor 10 for visualization. 
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