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Summary: 
A new approach to assess the emanation of 222Rn from 226Ra sources based on measurements of the 
residual 222Rn is presented. The method incorporates the dynamics into the inference procedure, rather 
than resorting to previously available steady-state approximations. The algorithm is based on approxi-
mate Bayesian filtering in a switched linear dynamical system to identify regimes of changing emanation 
behavior from a time-series of spectral data. 
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Introduction 
For the calibration of 222Rn measurement de-
vices at low activity concentrations, decaying 
222Rn reference atmospheres produced through 
gaseous standards do not yield satisfactory sta-
tistical uncertainties. A different approach to re-
alize reference atmospheres of low activity con-
centrations is provided by 222Rn emanation 
sources. Emanation sources are 226Ra sources 
constructed so that some fraction of the gener-
ated 222Rn is released from them. In [1, 2], an 
approach to measure the released amount of 
222Rn based on measuring the residual 222Rn in 
the source is presented. However, this approach 
is only valid for times in which steady state has 
been reached. Moreover, it has been suggested 
that environmental conditions can impact the 
emanation behavior, which leads to erroneous 
results when assuming steady state. In the fol-
lowing, a new approach is presented based on 
Gaussian sum filtering in a switched linear dy-
namical system (SLDS) which more accurately 
models the emanation behavior, given the deter-
ministic dynamics of the radioactive decay, with 
the possibility for on-line operation. Additionally, 
the method allows one to probabilistically identify 
regimes of constant emanation behavior. 

Model and filtering algorithm 
The basis of the new method is to model the 
226Ra source as a switched linear dynamical sys-
tem, in which its latent state vector 𝑥𝑥 𝜖𝜖 ℝ𝑛𝑛×1, 

𝑥𝑥 =  [𝐴𝐴𝑅𝑅𝑅𝑅−222
𝑆𝑆 , 𝐴𝐴𝑅𝑅𝑅𝑅−226

𝑆𝑆 , 𝜂𝜂, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]
𝑇𝑇
, where 𝐴𝐴𝑖𝑖

𝑆𝑆 is the 
activity of the 𝑖𝑖-th nuclide in the source and 𝜂𝜂 is 
the number of escaping 222Rn atoms per unit 
time, evolves through the Itō stochastic differen-
tial equations (1). 

𝑑𝑑𝑑𝑑 =  𝐹𝐹𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥 +  𝐿𝐿𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠,𝑡𝑡   (1) 

where 𝐹𝐹𝑠𝑠 ∈ ℝ𝑛𝑛×𝑛𝑛 is the fundamental matrix of the 
𝑠𝑠-th model and 𝐿𝐿𝑠𝑠 ∈ ℝ𝑛𝑛×1 is a matrix which con-
trols how the increments of a Wiener-process 
𝑑𝑑𝑊𝑊𝑠𝑠,𝑡𝑡 of power-spectral density 𝑄𝑄𝑠𝑠 ∈ ℝ enter the 
system. The index 𝑠𝑠 of the active dynamics is 
modeled as a discrete Markov process with tran-
sition matrix Π. For each 𝑠𝑠 ∈ ℕ, the solution to (1) 
is an initial value problem [3] and resembles a 
Gaussian process for Gaussian 𝑥𝑥0. 𝐹𝐹𝑠𝑠 = 𝐹𝐹 and 
𝐿𝐿𝑠𝑠 = 𝐿𝐿 are chosen to be 

𝐹𝐹 = [
−𝜆𝜆𝑅𝑅𝑅𝑅−222 𝜆𝜆𝑅𝑅𝑅𝑅−222 −𝜆𝜆𝑅𝑅𝑅𝑅−222 0

0 −𝜆𝜆𝑅𝑅𝑅𝑅−226 0 0
0 0 0 1
0 0 0 −𝛾𝛾

] , 𝐿𝐿 = [ 
0
0
0
1
] 

Generally, measurements with spectrometric de-
vices 𝑦𝑦 ∈ ℝ𝑚𝑚×1 (2) are performed over non-over-
lapping intervals 𝑙𝑙𝑘𝑘 ∈ ℝ indexed by 𝑘𝑘 ∈ ℕ, such 
that 𝑡𝑡𝑘𝑘 ∈ 𝑇𝑇, where 𝑇𝑇 represents the set of meas-
urement time instants. 

𝑦𝑦𝑘𝑘,𝑙𝑙𝑘𝑘 =  𝐻𝐻 ∫ 𝑥𝑥(𝑡𝑡𝑘𝑘 + 𝜏𝜏)𝑙𝑙𝑘𝑘
0 𝑑𝑑𝑑𝑑 + 𝑟𝑟𝑘𝑘  (2) 

where 𝐻𝐻 ∈ ℝ𝑚𝑚×𝑛𝑛 maps the state integral to the 
measurement space, 𝑟𝑟 is an uncorrelated 
Gaussian white noise sequence of variance 𝑅𝑅𝑘𝑘 
indexed by 𝑘𝑘 that is computed from the observed 
𝑦𝑦𝑘𝑘  (Gaussian approximation to counting statis-
tics). This approximation is crucial, since it pre-
serves the conjugacy of the model. 𝐻𝐻 is assumed 
to be deterministic. Given a time-series of spec-
tra, we are interested in the filtering distribution 
𝑝𝑝(𝑥𝑥𝑘𝑘, 𝑠𝑠𝑘𝑘|𝑦𝑦0:𝑘𝑘, 𝐻𝐻) = 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑠𝑠𝑘𝑘, 𝑦𝑦0:𝑘𝑘, 𝐻𝐻)𝑝𝑝(𝑠𝑠𝑘𝑘|𝑦𝑦0:𝑘𝑘, 𝐻𝐻), 
which is defined recursively [3, 4], since both 𝑥𝑥 
and 𝑠𝑠 are Markov processes. 𝑦𝑦 is a linear trans-
formation of 𝑥𝑥, so for given 𝑠𝑠𝑘𝑘, 𝑥𝑥𝑘𝑘 and 𝑦𝑦𝑘𝑘 are 
jointly Gaussian. 
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𝑝𝑝(𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘|𝑠𝑠𝑘𝑘, 𝐻𝐻) = 

𝒩𝒩 ([
𝜇𝜇𝑥𝑥𝑘𝑘

𝐾𝐾𝑙𝑙𝑘𝑘𝜇𝜇𝑥𝑥𝑘𝑘
] , [

Σ𝑥𝑥𝑘𝑘 Σ𝑥𝑥𝑘𝑘𝐾𝐾𝑙𝑙𝑘𝑘𝑇𝑇
𝐾𝐾𝑙𝑙𝑘𝑘Σ𝑥𝑥𝑘𝑘 𝐾𝐾𝑙𝑙𝑘𝑘Σ𝑥𝑥𝑘𝑘𝐾𝐾𝑙𝑙𝑘𝑘𝑇𝑇 + 𝐽𝐽𝑠𝑠𝑘𝑘,𝑙𝑙𝑘𝑘 + 𝑅𝑅𝑘𝑘

]) 

with 
𝐾𝐾𝑙𝑙𝑘𝑘 = 𝐻𝐻 ∫ 𝑒𝑒𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑𝑙𝑙𝑘𝑘

0 , 𝐽𝐽𝑠𝑠𝑘𝑘,𝑙𝑙𝑘𝑘 = ∫ 𝐾𝐾𝑙𝑙𝑘𝑘-𝜏𝜏𝐿𝐿𝑄𝑄𝑠𝑠𝑘𝑘𝐿𝐿𝑇𝑇𝐾𝐾𝑙𝑙𝑘𝑘-𝜏𝜏
𝑇𝑇 𝑑𝑑𝑑𝑑𝑙𝑙𝑘𝑘

0 . 

For the specific 𝐹𝐹,𝐿𝐿 and 𝑄𝑄 in the models, the dis-
cretization of (1), 𝐾𝐾𝑙𝑙𝑘𝑘 and 𝐽𝐽𝑠𝑠𝑘𝑘,𝑙𝑙𝑘𝑘 are available ana-
lytically and were implemented using symbolic 
computation, using the diagonalizability of 𝐹𝐹. To 
obtain the approximate filtering distributions, Al-
gorithm 1 in [4] was adapted to include the addi-
tional terms 𝐾𝐾𝑙𝑙𝑘𝑘 and 𝐽𝐽𝑠𝑠𝑘𝑘,𝑙𝑙𝑘𝑘. As discussed in [4], it 
is infeasible to compute the exact filtering distri-
bution. In our implementation, the arising Gauss-
ian mixtures are collapsed to smaller mixtures 
based on an upper bound of the KL-divergence 
[5], where we chose to collapse to 3 Gaussian 
components per model. The unknown parame-
ters (𝑄𝑄, Π, 𝛾𝛾) are tuned with respect to approxi-
mate maximum marginal likelihood [3]. 

Experimental Results 
The SLDS approach was chosen because the 
time-series of interest is comprised of regimes of 
constant 𝜂𝜂 and those of changing 𝜂𝜂, where it is 
of interest to know when stable regimes are 
reached. The choice was made to model this be-
havior by having two linear dynamic models, one 
of them with fully deterministic dynamics e.g. 
𝑄𝑄1  =  0. 

For the collection of data, an electroplated 226Ra 
(104.4 ± 0.4) Bq source was mounted on top of 
a high-purity Germanium -ray detector, inside of 
a climate chamber. Spectra were recorded over 
the course of approx. 85 days in intervals of 
10800 s live time. At specific times, the relative 
humidity was changed to induce changes in 𝜂𝜂. 
From each -ray spectrum, the total number of 
counts that were recorded at energies over 
200 keV was calculated, a background count 
rate was subtracted, and the algorithm was ap-
plied to the result. The threshold of 200 keV was 
chosen because above this threshold the spec-
trum is only made up of events that are due to 
the background or the short-lived 222Rn progeny 
(SLP) within the source. The SLP is assumed to 
always be in equilibrium with 222Rn, which is a 
valid approximation on these time-scales. 

Figure 1 shows the raw-counts that were com-
puted from the spectra (input data), the relative 
humidity inside the chamber as measured by a 
SHT-35 sensor (red curve), the inferred filtering 
distributions and the results that would have 
been obtained from the method in [1, 2]. It can 
be observed from these results that once the dy-
namics of ingrowth are modeled in this way it be-
comes apparent that the methods in [1, 2] lead 

to deviations from the true value. The new 
method extends the validity to regimes of non-
constant 𝜂𝜂 and allows for an estimate of the nat-
urally expected increased uncertainty in these 
regimes. Moreover, all obvious switching points 
within the time-series are detected. 

Figure 1: Filter output (black) with estimated 90 % 
quantiles (grey) and comparison with results of the 
methods [1, 2] on the same dataset (blue) 
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