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Introduction
In the context of Industry 4.0 and especially in the field
of Structural Health Monitoring, Condition Monitoring
and Digital Twins, simulations are becoming more and
more important. The exact determination of material
parameters is required for realistic results of numerical
simulations of the static and dynamic behavior of tech-
nical structures. There are many possibilities to de-
termine elastic material parameters. One possibility of
non-destructive testing are ultrasonic guided waves. For
the evaluation of the measurement results, mostly in-
verse methods are applied in order to be able to draw
conclusions about the elastic material parameters from
analysing the ultrasonic guided wave propagation. For
the inverse determination of the elastic material param-
eters with ultrasonic guided waves, several investigations
were carried out, e.g. the determination of the isotropic
material parameters through the point of zero-group-
velocity [1] or anisotropic material parameters with a
simplex algorithm [2]. These investigations are based on
the evaluation of dispersion images. Machine learning
and in particular Convolutional Neural Networks (CNN)
are one possibility of the automated evaluation from im-
age data, e.g. classification or object recognition prob-
lems. This article shows how the dispersive behavior of
ultrasonic guided waves and CNNs can be used to de-
termine the isotropic elastic constants of plate-like struc-
tures.

Concept
For using supervised learning algorithms and CNNs, a
diverse data set of dispersion images with known mate-
rial parameters is required. For this reason, the Scaled-
Boundary-Finite-Element-Method (SBFEM) [3] is used
to generate synthetic data and create dispersion images
comparable to real measurement results, as it is shown in
Figure 1. The dispersion images are computed using a 2D
Fast Fourier Transform of the surface displacement take
along a line simulated with the SBFEM to calculate the
Frequency and Wavenumber. Python with the software
framework Keras from Tensorflow is used to implement
the CNN and train the model on the dispersion images
to predict the isotropic elastic material constants.

Data and Preprocessing
For generating dispersion images using the SBFEM,
random elastic material parameters are used in the
range of 0.2 to 0.45 for the Poisson’s ratio and for the
Young’s modulus normalized to density in the range of

Figure 1: A dispersion image obtained using the SBFEM

26 ∗ 106[m2/s2 to 28 ∗ 106[m2/s2] which includes vari-
ous metallic materials like aluminum or steel. The gen-
erated dataset contains 1000 labeled samples which are
converted into 8 bit gray scale images with a resolution
of 656x875 pixels. For training a neuronal network a nor-
malization of the input and output data is recommended.
Therefore, each pixel is normalized into the value range
zero to one, dividing by 255. The material parameters,
which the CNN is predicting, are also normalized into
the range from zero to one by applying a normalization
related to the minimal and maximum value. For evaluat-
ing and training the model, the dataset is split into 600
training, 300 validation and 100 test samples.

Architecture
For the baseline architecture, a simple feed forward CNN
architecture as usually used for classification problems is
chosen and applied to the regression problem. The struc-
ture of the 2D convolutional layers is the same in each
layer, only the number of filters doubles for each layer.
The filter kernel size is always three by three and step
size of the kernel is one in every direction, as well as
the dilation rate. This is intended to prevent informa-
tion loss, as is the use of “same padding” in the border
area of the images while applying the kernel. The ini-
tial values of the kernel are initialized using the Keras
”glorotuniform” method. The biases are initialized to
zero and no regularizers are applied to biases or kernels.
Due to the regression problem and the normalization of
the input and output, a ReLU activation function is used
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in each layer. To downsize the feature map while pro-
cessing, max pooling with a two by two filter size and
step size of two is applied. The sequence of these lay-
ers remains the same and is repeated several times until
the transition to the decision layer. A short summary is
listed in Table 1. The transition between the last con-
volutional layer and the fully connected layers is done
by a flattening layer. The hyperparameters of the fully
connected layers are equal to the convolutional layers.
A separate model is trained for predicting Poisson’s ra-
tio and density-normalized Young’s modulus separately,
while the architecture is the same for both models.

Table 1: Summary of the baseline model architecture

Layer (type) Output Shape Param

conv2d (None, 656, 875, 16) 160
activation (None, 656, 875, 16) 0
max pooling2d (None, 328, 437, 16) 0

...
max pooling2d 5 (None, 10, 13, 1024) 0
conv2d 6 (None, 10, 13, 2048) 18876416
activation 6 (None, 10, 13, 2048) 0
flatten (None, 266240) 0
dense (None, 1) 266241
activation 7 (None, 1) 0

Number of trainable parameters: 24,549,761

Training
For training of the model only Keras functions are used.
The Adam Optimizer (beta1 = 0.9, beta2 = 0.999,
epsilon = 1 ∗ 10−7) with the mean squared error (MSE)
as a loss function. Due to the normalization of the out-
put data, the loss function is called the normalized MSE
(NMSE). The batch size is set to 5 for a general result
considering there are only little changes in the behavior
of the dispersion curves for different material parame-
ters. The training data is shuffled every epoch to avoid
learning from sequences. The learning rate is initialized
to 0.0001 and regulated using the ReduceLROnPlateau
callback function(monitor = ”valloss”, factor = 0.1,
patience = 10, verbose = 1, mode = ”min”, mindelta =
0.0001, cooldown = 5, minlr = 0). The training is car-
ried out for 50 epochs and the best model achieved up
to then is saved for each epoch. To achieve reproducible
results a random seed and some environment parameters
are fixed.

Results
First results for the mean absolute error (MAE) of the
testdata and the percent error of the testdata related to
the maximum value of the simulation are shown in Ta-
ble 2. These first results for the testdata are based on the
model which achieved the best result for the validation
data during training. The best result on the validation
data for Poisson’s ratio was achieved in the 30th epoch
and for the density-normalised Young’s modulus in the
40th epoch. These first results show that a good pre-
diction of the elastic material parameters is possible. As
expected, the error for predicting values close to min and

max of the range of values is higher than for values which
are in the mid-range of the simulated material parame-
ters, as is the error of the test data compared to training-
and validation data.

Table 2: Test results for the baseline model.

Dataset Test
MAE Percent

Poisson’s ratio 9, 56 ∗ 10−4 0, 027%
Young’s modulus/density 8842, 16 0, 032%

For further evaluation of the CNN, the Grad-CAM Algo-
rithm, which is normally used for classification methods,
is applied to ensure that the neuronal network is pre-
dicting from the behavior of the curves. Figure 2 shows
that the area of low wavenumbers and frequencies has a
higher influence on the calculation of the Poisson’s ratio.

Figure 2: A ”heat-map” for predicting the Poisson’s ratio
calculated using the Grad-CAM Algorithm

Summary
This article shows that it is possible to extract material
parameters from the dispersive behavior of guided waves
using SBFEM simulation data and Convolutional Neu-
ronal Networks. In future studies, this method could be
extended to the determination of anisotropic material pa-
rameters and other arbitrary boundary parameters from
real measurement dispersion images.
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