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Introduction 

Every patient journey in the hospital starts with the 
anamnesis. During anamnesis, patient information is 
collected and basic vital signs are examined. Usually, 
patients report their symptoms and medical history to 
a doctor in an interview and nurses measure relevant 
vital parameters with different devices. The goal of 
the TEDIAS (Test- und Entwicklungszentrum für Dig-
itale Aufnahmesysteme) project is to support medical 
staff during anamnesis by implementing an auto-
mated, digitized system for vital data recording in the 
University Medical Centre Mannheim. In a continuous 
field test, the TEDIAS system collects physiological 
data of patients thereby assessing the technical per-
formance of novel sensors as well as the clinical ap-
plicability of the system. 
 
When a patient admitted to the clinic for internal med-
icine takes a seat in the armchair of the TEDIAS sys-
tem, shown in Figure 1, the TEDIAS process is 
started. An avatar displayed on the screen guides the 
patient through the process and asks relevant ques-
tions. Patients can enter their answers on a tablet at-
tached to the armchair. Different sensors are inte-
grated in the armchair to acquire vital data such as 
blood pressure, body temperature, blood oxygen sat-
uration and electrical cardiac activity.  
 
Another critical vital parameter is the respiratory rate 
giving immediate insights into respiratory illnesses 
and other medical conditions [1, 2, 3]. Especially in 
the context of the COVID-19 pandemic, it has played 

a crucial role for triage decisions, as an early indicator 
for clinical deterioration, and as an important predictor 
for pneumonia [2]. Assessing respiratory rates is of-
ten performed by counting the breaths per minute 
(bpm) [3]. Since manual counting is time consuming, 
it has been reported that respiratory rate screening is 
regularly omitted [3, 4]. Alternatively, some 
healthcare professionals measure arterial haemoglo-
bin saturation through pulse oximetry and incorrectly 
equate normal haemoglobin levels with adequate 
ventilation [3, 4]. Pulse oximetry is no replacement for 
measuring respiratory rate and complete omission 
can have serious clinical consequences. The problem 
is reinforced by the fact that there is no gold standard 
technique for measuring and monitoring respiratory 
rates. Recent research has focused on contactless 
measurement methods. Contactless systems offer 
several advantages over contact-based systems: No 
skin irritations caused by sensor elements placed on 
the skin and less patient discomfort. A major disad-
vantage of contactless sensors is that they are often 
prone to motion artifacts. Different contactless respir-
atory rate measurement techniques have been devel-
oped that can be categorized into four main classes: 
Techniques that measure environmental respiratory 
sounds, air temperature, chest wall movements, or 
cardiac activity modulation [5].  
 
We present a novel technique that measures permit-
tivity changes in the thorax for contactless determina-
tion of respiratory parameters. The non-invasive sen-
sor system was shown to be feasible for detecting 
small dynamic changes of thoracic parameters in a 
lung phantom [6]. In this work, the contactless sensor 
system’s capability to detect physiological respiratory 
rates in human subjects is assessed. By incorporating 
the sensor system into the TEDIAS system, the res-
piratory rate could be automatically determined with-
out direct patient contact. 
 
Methods and Materials 
 
The contactless sensor system consists of a pair of 
coupled ultra-high-frequency (UHF) antennae 
(Würth 7488910043). U.FL cables connect the anten-
nae with the electronic unit. A synthesizer within the 
electronic unit generates an UHF signal which is sent 
by the transmitter antenna. The UHF electromagnetic 
wave is transmitted into a body and is modulated by 

 
Figure 1: The TEDIAS armchair in the clinic for 
internal medicine of the University Medical Centre 
Mannheim. 
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permittivity changes within the body. The second an-
tenna receives the modulated signal after which the 
signal is processed by a quadrature demodulator. 
The contactless sensor’s raw signal consist of an In-
Phase (I) and a Quadrature (Q) signal.  
 
Setup 
 
To evaluate if the contactless sensor system can de-
termine human respiratory rates, the antennae were 
fixated on a chair back. The system was operated at 
433 MHz with a transmitter power of about 470 µW. 
Data  was collected from human subjects with no 
known prior respiratory disorders. The subjects sat in 
a relaxed upright position on the equipped chair. The 
antennae were mounted at 30 cm height from the 
seating surface with a distance of 35 cm from each 
other, corresponding to the average subject’s thorax 
width. By breathing through a ventilation mask with a 
connected flowmeter (Sensirion SFM3000), a refer-
ence respiratory flow signal was acquired. The setup 
is sketched in Figure 2. In each data acquisition ses-
sion, the trial manager gave breathing commands 
that the subjects had to follow. The timing of the 
breathing commands was freely chosen. Breathing 
commands were: “Breath normally”, “breath fast”, 
“breath slowly”, “hold breath”. Data from 13 subjects, 
two datasets each (except for one subject only one 
dataset) with durations between 120 s and 330 s, was 
collected. 
 
Ground truth 
 
The ground truth respiratory rates were calculated us-
ing the reference flow signal. In order to determine the 
inhalation events, the flow signal was first interpolated 
to a uniform sampling rate of 1 kHz. A bandpass filter 
with a passband from 0.05 Hz to 1.30 Hz was applied 

to suppress artifacts and to attenuate noise. The 
arithmetic mean was subtracted and the filtered sig-
nal was scaled to the value range [-1; 1]. Potential in-
halation onsets correspond to positive zero crossings 
of the processed flow signal and potential exhalation 
onsets correspond to negative zero crossings. In a 
two-step validation, erroneously detected inhalation 
and exhalation events were dropped to receive a reli-
able ground truth.  
 
In a first validation step, each interval between two 
positive and between two negative zero crossings 
was compared to a constant threshold. In the case of 
positive zero crossings, if the interval contained val-
ues below the threshold of -0.1, at least minimal ex-
halation had occurred. The subsequent positive zero 
crossing was passed to the next validation step. For 
exhalation events, the interval between negative zero 
crossings had to exceed the threshold of 0.1 for the 
subsequent negative zero crossing to pass the first 
validation step. 
 
The second validation step examined if positive and 
negative zero crossings alternated. In some in-
stances, the algorithm identified two inhalations in the 
“hold breath” paradigm before and after breath pause 
even though the subject only inhaled once after the 
breath pause. Thus, if positive and negative zero 
crossings did not alternate, the first of two consecu-
tive positive or negative zero crossings was dropped.  
 
Positive zero crossings that passed both validation 
steps were considered true inhalation onsets and val-
idated negative zero crossings were considered true 
exhalation onsets. An example reference flow signal 
after bandpass filtering with true inhalation and exha-
lation onsets is shown in Figure 3. 
 
Respiratory rates, expressed in bpm, were calculated 
as the arithmetic mean of the number of inhalations 
(#ℎ) and the number of exhalations 
(#ℎ) within a dataset divided by the meas-
urement duration Δ in minutes: 
 

#ℎ + #ℎ
2Δ  

(1) 

 
 
Contactless sensor signal processing 
 
The I/Q-signals of the contactless sensor system 
were interpolated to a uniform sampling rate of 1 kHz. 
To attenuate noise, the signals were lowpass filtered 
with a cutoff frequency of 1.3 Hz. The raw I/Q-signals 
from the contactless sensor system are non-station-
ary with varying dynamic ranges and are subject to 
motion artifacts. Moreover, the qualities of the I- and 
Q-signals depend strongly on the exact positioning of 

 
Figure 2: Experimental setup. The subject sat on 
a chair equipped with the sensor system consist-
ing of two antennae in the chair back. A ventilation 
mask connected to a flowmeter acquired a refer-
ence signal. 
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the subject in relation to the sensor elements and can 
differ from each other in one recording. By calculating 
the phase between the two sensor signals, a single 
stationary signal with robust quality can be obtained. 
The phase between Q-signal and I-signal was calcu-
lated and a lowpass filter with a cutoff frequency of 
1.0 Hz was applied to the phase signal to reduce 
noise. The first discrete derivative of the resulting sig-
nal was calculated. The gradient signal was standard-
ized to zero mean and unit variance.  
 
Positive and negative zero crossings within the gradi-
ent phase signal were determined. Positive zero 
crossings within the processed sensor signal were 
considered to be caused by exhalation events and 
negative zero crossings by inhalation events respec-
tively. The interval between the current negative zero 
crossing and the preceding negative zero crossing 
had to contain values below a threshold of -0.6. Re-
spectively, each interval between two successive 
positive zero crossings had to contain values below 
the threshold. Zero crossings detected within the con-
tactless sensor signal that satisfied the conditions 
were classified as inhalations and exhalations, and 
are hereafter referred to as detected inhalations and 
detected exhalations. Respiratory rates derived from 
the detected inhalations and exhalations were calcu-
lated following Equation (1). 
 
Evaluation methods 
 
The difference between the ground truth respiratory 
rates and the respiratory rates derived from the con-
tactless sensor signal was calculated. The timing be-
tween the true inhalation/exhalation events and the 
detected inhalation/exhalations events was analyzed. 
For each true inhalation, the associated detected in-

halation was determined by searching in the time in-
terval between the preceding true exhalation and the 
subsequent true exhalation. The delays were calcu-
lated. The same procedure was applied to the exha-
lation events. 

Results 

The true respiratory rate of all subjects ranged from 
10.17 bpm to 20.89 bpm. The absolute difference be-
tween the true respiratory rate and the respiratory 
rate derived from the sensor signal was minimum 
0.00 bpm and maximal 0.67 bpm. The mean absolute 
error between the reference respiratory rate and the 
detected respiratory rate was 0.13 ± 0.18 bpm. Fig-
ure 4 shows a plot of the true and the detected respir-
atory rates and their differences over all datasets. 
 
Falsely detected inhalations and exhalations as well 
as true inhalations and exhalations that were not de-
tected in the sensor signal were counted. In a total of 
1336 true inhalations, 12 inhalations were missed and 
9 were falsely detected based on the contactless sen-
sor signal. In all datasets, a total of 1333 exhalations 
occurred, of which 13 exhalations were not detected 
and 7 were falsely detected in the contactless sensor 
signal. The mean false positive rate and the mean 
false negative rate over all datasets are summarized 
in Table 1. The rate of falsely detected inhalations 
and exhalations was very low with consistent values 
below 0.01.  
 
The average median delay between the onsets of the 
true inhalation events and the onsets of the detected 
inhalations events across all datasets was  

 
Figure 4: True respiratory rates (blue), detected 
respiratory rates (orange dotted) and the differ-
ences between true and detected respiratory 
rates (red). 
 

 
Figure 3: Example flow signal excerpt. The flow 
signal in liters per minute (lpm) after bandpass  
filtering is shown (blue) with markers at ground 
truth inhalation (red) and exhalation (black) on-
sets. Different breathing patterns (normal breath-
ing, breath pause, fast breathing) can be seen.  
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-38.92 ± 83.14 ms. The average median delay  
between the onsets of the true and the  
detected exhalations across all datasets was  
-41.12 ± 46.52 ms. On average, 68.1% of the inhala-
tion delays had negative values meaning the inhala-
tion was detected in the contactless sensor signal be-
fore it was detectable in the flow signal. The exhala-
tion delays were on average 74.4% negative, which 
indicates that exhalations were detected in the con-
tactless sensor signal before their detectable occur-
rence in the flow signal. The boxplots in Figure 5 vis-
ualize the median delay and the spread of the delays 
of each dataset. 

Discussion 

The respiratory rate can be reliably and reproducibly 
derived in different subjects from the contactless sen-
sor signal. The respiratory rate is calculated based on 
the detected inhalation and exhalation events. The 
occurrence of falsely detected inhalation or exhala-
tion events is below 1%, missing out inhalation and 
exhalation events in the contactless sensor signal oc-
curs in less than 1% of all events. The results indicate 
that not only the respiratory rate, but also the timing 
of inhalation and exhalation events can be deter-
mined based on the sensor signal. Respiratory pa-
rameters beyond the respiratory rate can thus be ex-
tracted from the sensor signal. 
 
Inhalations and exhalations can be detected through 
the contactless sensor system before their detection 

in the flow signal in the majority of cases. The inhala-
tion and exhalation events were in median detected 
with a time advantage of about 40 ms in the contact-
less sensor signal. The spread of the delays was 
strong, as seen in the boxplots in Figure 5. The 
spread can be partly explained by inaccuracies in the 
reference flow signal and thereby in the ground truth.  
We derived the ground truth from a non-invasive flow-
meter reference signal with an automated algorithm. 
The procedure has two sources of errors: Firstly, the 
measurement technique and location, and secondly, 
the signal evaluation. The flow sensor has intrinsic in-
accuracies, to which accuracy shifts due to tempera-
ture variation, positional sensitivity and noise are 
added. Moreover, the distal location of the flowmeter 
induces delays. Additionally, variable leaks can occur 
between the mask and face, especially in subjects 
with beards. Invasive, proximal flow measurement 
would have provided faster responses and higher 
sensitivities, but would have been unreasonable in 
healthy subjects. Signal evaluation was automated to 
extract the inhalation and exhalation onsets in the 
flow signal. The extracted inhalation and exhalation 
onsets were not reviewed by medical experts and 
may not reflect the complete truth.  
 
A major problem with contactless sensors is their sen-
sitivity to motion artifacts. By utilizing the phase be-
tween the two signals of the described contactless 
sensor, the problem of motion artifacts is circum-
vented.  
 
Heuristics such as physiological respiratory rates 
were omitted in the algorithm for determining respira-
tory rates which makes the algorithm robust for sud-
den changes in respiration. In our experiments, each 
dataset contained different respiration patterns of dif-
ferent durations that did not influence the precision of 
the determined respiratory rate. We hypothesize that 
our algorithm and contactless sensor will also allow 
robust detection of pathophysiological respiration 
rates.  
    
This work shows that physiological respiratory rates 
can be determined with high precision based on a 
contactless ultra high frequency sensor.  As a next 
step, the contactless sensor system will be integrated 
in the backrest of the TEDIAS system’s armchair and 
will collect patients’ respiratory data. To determine 
respiratory rates, the constant thresholds used in the 
described algorithm may need to be adjusted. The 
respiratory rate will be stored, along with other vital 
parameters, in a central clinical cloud system, from 
where it can be evaluated by healthcare profession-
als. The contactless respiratory sensor system can 
thus contribute to the transformation of the healthcare 
system towards digitized hospitals. 

 
Figure 5: Boxplots of the delays between the on-
set of the true inhalation and the detected inhala-
tion events. Outliers are not depicted. 

Table 1: Mean false positive rates and mean false 
negative rates of all datasets. 
 
 False Positive 

Rate 
False Negative 

Rate 
Inhalation 0.007 0.010 
Exhalation 0.005 0.009 
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