
 The European Test and Telemetry Conference – ettc2022 145

DOI 10.5162/ettc2022/6.1

Encryption Techniques for Test Data
Malcolm Weir1

1 Ampex Data Systems Corporation, Hayward, CA, USA,
mweir@ampex.com

Abstract:
The ubiquitous need for data security / information assurance in test applications is no longer remotely
controversial. But there exists significant confusion in the marketplace regarding the virtues and values
of the various techniques and technologies. This paper discusses the standards and certifications used
to protect data and explores the cost/benefit analysis of various approaches, including both traditional
government-sponsored devices and commercial alternatives.

There are many overlapping standards for encryption, both for data in transit and data at rest. While this
paper mostly focusses on data at rest applications, there are many commonalities with data
communications security problems.

A key source of market confusion is the overlapping terms and acronyms, including AES, FIPS,
Common Criteria, etc. This paper seeks to clarify these labels and explores the suitability of the various
approaches to specific test and telemetry requirements.

Key words: Encryption, information assurance, standards, data at rest, data in transit.

Background
Data encryption has always been a desired
feature for a subset of test applications,
especially for military applications. Historically,
when a program requires that data be encrypted,
the supplier and the customer / end user are
engaged in the provision of the appropriate
technology e.g. “Government Off The Shelf”
(GOTS) encryptors.

This is now changing in two key regards: first, for
reasons that will be discussed later, encryption
has become the “best practice” for all
applications, regardless of who the end user
happens to be, and secondly the suitability of
GOTS solutions is not universal, again for a
number of reasons.

With the increased demand for these
technologies, there is an increased level of
confusion in the industry as to what, precisely, is
available and required to meet the needs of a
program. This confusion leads to the critical
problem that they very technology that is being
deployed to protect data may not, in fact, be well
suited to the task.

1 Technically, in this context “strength” is a function of
key size and algorithm, but common usage tends to
ignore the former on the basis that comparisons

This paper attempts to demystify some of the
terminology and processes around data
encryption standards.

Introduction
It is sometimes noted that it’s very easy to invent
a cipher. The only challenges are (1) to ensure
that it can run in the hardware resources
available at the performance required, and (2) to
prove it isn’t easily cracked (defined as
deciphered without the appropriate key or keys).

Obviously, those two factors are linked: there’s
no point in having an uncrackable cipher that
takes too long to use, nor having an extremely
efficient but weak one. But as a general rule,
consumers of this technology care most about
the cipher’s “strength”1, and work around the
performance issues. This paper is mostly
concerned with issues of “strength”.

Why Encrypt?
The benefits of encrypting data sets can be
described as confidentiality, authenticity, and
sometimes integrity. The first is obvious: without
the key, unauthorized access requires cracking
the cipher or exhaustively trying keys, both of
which are (hopefully) hard. But the information

assume equivalent key lengths, and thus the
algorithm is the determining factor.

 The European Test and Telemetry Conference – ettc2022 146

DOI 10.5162/ettc2022/6.1

assurance benefits of encryption are sometimes
overlooked: because only those with the correct
key can create the expected data sets,
accidentally or maliciously falsified data cannot
be introduced between the source and
destination. And integrity – the assurance that
chunks of the data set are not missing or
corrupted, for example – can come about in the
much the same way by using encryption
schemes that “chain” blocks together, so a single
corrupted word will cause a ripple effect that will
be easier to detect. Of the three benefits,
confidentiality has been the driving rationale for
test data sets.

Traditionally, the apparent need for encryption
was frequently avoided by the use of physical
security – vaults of tapes and dedicated, isolated
telephone circuits. But by the mid-1970s, the
financial services sector had started to
implement distributed systems (for cash
dispenser devices / “Automated Teller
Machines”); these networks required technical
means to make eavesdropping unproductive.

And as the world became more connected and
more digital, the consequences of data leaks
became more significant. Previously, the data on
a misplaced reel of tape was reasonably safe
from disclosure, because of the rarity of suitable
drives to read the media as well as the obscurity
of most data formats meant it unlikely that
accidental loss would represent a significant risk.
Today, though, an accidentally lost dataset or a
malicious exfiltrated one are quite likely to end
up in “the wrong hands”, which has lead to a
recognition that data previously thought
mundane (such as accounting or stock control
records) or data that is confidential but of very
limited interest (e.g. health information) may
have economic value on a “black market” sale.

As the (real or imagined) value of purloined (or
misplaced) data has grown, so has the default
posture: it is now “best practice” to assume that
data will leak, and therefore the appropriate
posture is to encrypt everything to protect the
underlying information.

General Types of Encryption
Broadly speaking, encryption applications
relevant to test data can be broken down into two
types: data-at-rest (DaR), and data-in-transit
(DiT). In terms of encryption technology, the
differences can sometimes be ignored, although
the implementations have different
characteristics and requirements. For example,
with a DaR implementation, an attacker may be
assumed to have a large volume of ciphertext to
work against, while with a DiT system attention
must be given to prevent compromising the
system with “side-band” leaks (such as Radio

Frequency leaks or power consumption
monitoring).

As well as DaR and DiT applications, encryption
algorithms can be summarized as either
symmetric or asymmetric; the former is defined
as using the same key to encrypt as you use for
decryption, while the latter uses different keys for
each operation. The vast majority of DaR
applications use symmetric algorithms, while the
modern internet is based on asymmetric
protocols (HTTPS, SSL, etc). (The principle
virtue of asymmetric algorithms is that it allows
for a model where the sender and receiver need
not know each other’s secrets, so, for example,
members of the public can communicate
securely with an online store without having to
be given the store’s private encryption key).

While asymmetric ciphers are exceedingly
useful, most test applications do not require
them; about the only obvious exception are
remote “phone home” telemetry systems, where
widely deployed devices report to a central
“mothership”. While the following sections focus
on symmetric “block” ciphers (as required by
DaR, but also applicable to DiT), the use of
asymmetric algorithms should not be completely
ignored.

The First Encryption Standard
With the possible exception of Julius Caesar’s
cipher, the DES standard was the first openly
published encryption standard. Invented by IBM
and codified as the US National Institute for
Standards and Technology’s (NIST’s) Federal
Information Processing Standard (FIPS)
Publication 46 (FIPS 46) in 1977, it has since
been withdrawn because it is too insecure for
contemporary use: with only a 56-bit key, all
possible keys can be tried in a reasonable time.
It also illustrates a risk in algorithm design: the
rationale for some of the design decisions was
opaque, leading to suspicions that the algorithm
was built with a ‘backdoor’ known only to the
designers.

One of the criticisms of the standard is that it is
explicitly forbidden for use with classified
information, fueling the suspicions of a backdoor
– a deliberate vulnerability that would allow the
National Security Agency (NSA) to read any
encrypted material. It is now believed that, in
fact, there was no backdoor -- to the contrary, the
reason for seemingly nefarious decisions about
its architecture was to protect it against a new
type of attack threat which the government
cryptanalysts understood but which was not at
the time common knowledge – although the US
Government did indeed weaken the algorithm by
reducing the key size from 64 bits to 56.

 The European Test and Telemetry Conference – ettc2022 147

DOI 10.5162/ettc2022/6.1

To compensate for the short key size in DES, the
3rd version of the FIPS standard (FIPS 46-3 [1])
was released in 1999. This introduced a method
whereby the data was looped through the DES
algorithm three times, each time with a different
key, making the overall key length 168 bits. This
might appear to triple the strength of the
encryption, but in fact, due to a specific type of
cryptographic attack, it really only doubles the
strength.

While technologically obsolete, Triple DES as
TDEA is also known is still approved for
protecting sensitive but unclassified US
government data (although not recommended
for new applications!).

The Advanced Encryption Standard (AES)
The workhorse of the current state-of-the-art in
encryption is AES. It was the result of an open,
international contest conducted by the NIST
between 1997-2001. Fifteen algorithm designs
were considered and evaluated for
cryptographic security and performance in a
variety of implementations (software, FPGA, and
so on). Three technical conferences were held in
the USA and Europe, involving more than 180
people from 23 countries, and featured voting by
the cryptographers on the candidate algorithms.

The winner of this process was an algorithm
designed by two Belgian cryptographers, a
subset of their Rijndael family of ciphers – the
name is derived from the surnames of the
inventors. Three Rijndael ciphers make up the
AES standard. Each takes a block of 128 bits of
data and uses key lengths of 128, 192 and 256
bits, respectively. In the twenty years since it was
published, the best technique for breaking into it
has improved the number of keys one needs to
“brute force” from 2256 to “just” 2252, so this is
an interesting result, but not particularly useful
for reading the ciphertext.

AES is the only block cipher in the Commercial
National Security Algorithm Suite (which
replaced the former “Suite B”) list. As such it is
listed by the NSA as being suitable, when used
with 256-bit keys, to protect up to TOP SECRET
information (although this list says nothing about
the implementation, only the algorithm; see the
next section on FIPS 197 [2]).

All AES algorithms operate on a block of 128
bits, that is 16 bytes; to encrypt larger quantities
of data, the algorithm must be applied to
successive 16-byte pieces. This creates a new

2 The use of two keys is not to increase the strength
of the encryption per se, rather it makes it very hard to
extract any information even given a huge amount of
encrypted data. Using the two 256-bit keys provides
no more than the strength of one 257-bit key: if it takes

problem: if you use the same key for each piece,
then the output ciphertext will show where those
16-byte pieces are duplicated (even if you don’t
know what the plain text actually is), which can
provide a lot of information about the plaintext.
To address this, AES features several “modes”,
the simplest of which is the “electronic code
book” (ECB) mode, where you use the same key
for each block. This can yield the unfortunate
results shown in the picture in Figure 1. A
straightforward enhancement is to include a
counter merged into the process, so that each
block is encrypted with different settings (the
AES CTR mode). Other modes use different
ways to perturb the process; which one is “best”
depends entirely on the application. For data at
rest encryption two modes are often used: CBC
(Cipher Block Chaining) and XTS (Xor–encrypt–
Xor-based tweaked-codebook mode with
ciphertext stealing), the latter using two equal-
sized keys2.

Compared to other algorithms, one significant
advantage of AES is that modern CPUs often
contain either special instructions or complete
special-purpose subsystems to perform (or
assist with) the operation. Examples include
Intel’s “AES-NI” instructions and NXP’s “AES
Execution Unit”. These hardware features not
only improve performance but make it harder for
an attacker to perform “side-channel” or “timing”
attacks where information about the process can
be deduced by monitoring the operation: the
special hardware subsystems act as “black
boxes” which conceal the details of the
operation.

It should be remembered that these modes are
mechanisms for applying the AES algorithm,
which itself always remains the same: a “black
box” that takes the same 128 bits of data and a

a certain time to try 2256 possibilities to get the first key,
then it will take the same amount of time to guess the
second, and 2256 + 2256 = 2257!

Plaintext

Encrypted with AES ECB Mode

Encrypted with AES CTR Mode

Figure 1 AES Modes

 The European Test and Telemetry Conference – ettc2022 148

DOI 10.5162/ettc2022/6.1

key of 128, 192 or 256 bits in length and
produces a 128-bit encrypted output.

FIPS Publication 197 (FIPS 197)
The document that codifies AES encryption –
that is, defines the algorithm is FIPS 197.
Related to the publication, certifications assuring
compliance with FIPS 197 are issued via the
Cryptographic Algorithm Validation Program
(CAVP). While it is possible to implement an
AES architecture, one can only be deemed
“certified” after having gone through the CAVP
process and awarded a FIPS 197 certificate.

While FIPS 197 improved upon its predecessor,
DES, it is likely the FIPS 197 standard will be
updated in the future with changes in how AES
is used or implemented to increase the strength
of the protection. This is not unlike how FIPS
46-3 introduced Triple DES.

In normal usage, when an algorithm is referred
to as FIPS 197, the implication is that the
algorithm has been certified by an accredited
laboratory to conform to the standard. NIST has
a Cryptographic Algorithm Validation Program
(CAVP) that defines the test suite that an
implementation of AES must pass, and then the
certified implementation will be recorded on the
NIST website. So, for example, certificate “AES
2408” was issued to Intelliprop, Inc. for their
AES-XTS implementation (an FPGA core), and
the NIST website indicates their implementation
is FIPS 197 certified for key lengths of 128 and
256 bits (but evidently not 192 bits).

In terms of a hierarchy of quality, it is perfectly
possible to have an AES implementation that
works and is functionally correct, but without a
NIST certification one cannot be objectively
confident of that correctness; in effect, the
certification is objective proof that the
implementation is a correct interpretation of the
standard.

FIPS Publication 140 (FIPS 140, FIPS 140-2,
FIPS 140-3)3
Complimentary to FIPS 197, FIPS Publication
140 “Security Requirements for Cryptographic
Modules” (FIPS 140) [3] covers the pieces
surrounding the actual encryption. When
working together as sub-component of a system,
these pieces are often referred to as a “module”
and consists of things like a micro-controller,
encryptors, and a supporting storage on the
same circuit board, or a software library with
clearly defined interfaces.

3 Note: the “dash” after a FIPS publication number is
the major version indicator, so “FIPS 140-2” is the
se9cond major version of the standard, and “140-3” is

In this broader context, a FIPS 140 module
includes some very straightforward concepts
and some more abstract ideas. The
straightforward concepts include physical
security requirements like “how can attempts to
physically interfere with the module be
detected?” and “how can accidental or deliberate
interference result in the module ‘failing safe’ and
refusing to function?” The more abstract ideas
are things like the characterization of the
interfaces into the module and the functional
roles, services and authentication provided. In
general, these concepts pull in other standards,
so while the FIPS 140 document is quite short,
by the time the rest has been incorporated, it
becomes a very extensive standard.

To understand this better, a brief description of
how encryption modules tend to be architected
is in order. It is common to consider the DaR
encryption on storage devices as matching the
illustration in Figure 2: unencrypted (“plaintext”)
data is fed into an algorithm, together with a
suitable key, and the resulting encrypted data is
stored on the device. As similar approach can of
course be used for DiT.

This is, of course, perfectly functional, and
usable, but it has limitations; probably most
significant of those is the fact that one, and only
one, key can decrypt the data. This may sound
like a good idea, until one realizes that it means
that every authorized user must have that one
single key, which becomes problematic when
there’s a need to revoke access to just one of
those users or the key gets compromised: the
only option is to decrypt all the data with the
original key and then re-encrypt it with a new
one.

the third. There are also minor revisions within
version, so there are three revisions of FIPS 140-2,
usually indicated by the publication date.

Figure 2 Simple Encryption

 The European Test and Telemetry Conference – ettc2022 149

DOI 10.5162/ettc2022/6.1

But there is a straightforward alternative: instead
of the user passing in the key used to encrypt the
data, they pass in a key that is used to unlock the
key that’s protecting it, as illustrated in Figure 3.
In this arrangement, multiple copies of the “data
encrypting key” (DEK) can be stored on the
storage device, with each copy encrypted with its
own “key encrypting key” (KEK). Any one of the
KEKs can be used to access a copy of the DEK,
and the DEK is then used to access the data.

In this way, if one KEK gets compromised or lost,
an administrator can simply erase the copy of the
DEK that is encrypted with that particular KEK,
leaving the rest untouched. And of course, an
outdated KEK can be updated by simply
decrypting the DEK using the old KEK, and then
re-encrypting it using a new one – a simple
operation involving a few bytes instead of
gigabytes!

An additional benefit of this approach is that the
DEK – the key that is protecting the user’s data
– need never leave the storage device. This
means that “multi-factor” arrangements, in which
you need two or more distinct and independent
KEKs to unlock the DEK, and each KEK is
provided by a different mechanism or “factor”,
can be crafted so that unless both factors (i.e.,
both KEKs) are simultaneously compromised,
the data remains safe – and the pieces only
come together within the controlled environment
of the storage device protecting the integrity of
the separate “factors”!

A slight variant of this idea is that, instead of the
DEK being stored in the storage device, one or
more KEKs are, and then the encrypted DEK is
provided to be decrypted by the KEK(s) within
the device. This approach ensures that the
storage device cannot be “tricked” into giving up
the DEK (as it simply doesn’t have it), yet
security is preserved as the DEK isn’t usable
unless it’s “correctly” encrypted by the KEK(s) in
the storage device.

So, getting back to FIPS 140: where a KEK/DEK
architecture (Figure 3) is being used, the DEK

must be generated using an appropriately
random “deterministic random number
generator” (DRNG) algorithm, an approved list of
which is provided (FIPS 140, Annex C, which
calls out NIST SP800-90B [4], amongst others).
Next the approved modes of AES operation are
detailed (NIST SP800-38E [5], for example,
defining how AES-XTS must be used).

Then there are algorithms (key derivation
functions, KDF’s) that convert weak (human-
grade) passwords into acceptably strong keys.
The idea here is that although it is
straightforward to “brute force” a short text
password, it is also easy to lock the module after
a certain number of failed attempts – and that
lockdown can be either temporary, preventing
additional efforts for some period, or irretrievably
permanent, by destroying the hidden DEK.
Instead, if the password is first converted into a
strong key, then backdoor attacks that nullify the
password-checking logic (i.e. make any
password appear to be “correct”) will be useless:
one would still need the key that was created by
applying the password together with some fixed
(but hidden) constants through the KDF
algorithm.

There is also another very significant capability
associated with a FIPS 140 certification: the use
of “message authentication” services (“HMAC”:
Keyed-Hash Message Authentication Code).
These provide a mechanism by which the
system can validate that a particular arbitrary-
sized stream of bytes (a “message”) has not
been tampered with. The fundamental idea is
that one can use a “hash algorithm” (e.g.,
“SHA-256”) that creates a checksum of the
message, and then cryptographically signs it
using the private part of a public key
cryptography key pair, so that any change to the
message will change the checksum and it is
impossible to update the signature without the
secret, private key. This approach is used in the
Ampex TSEM FIPS 140 module to validate the
contents of the memories storing the FIPS 197
FPGA bitstream using firmware code in a secure
microcontroller that is itself “signed” in the same
way.

Both the hash algorithm and the HMAC are
defined by their own FIPS standards: FIPS 180-4
“Secure Hash Standard (SHS)” [6] and FIPS
186-4 “Digital Signature Standard (DSS)” [7],
respectively. And the digital signature standard
defines the specifics of the acceptable public key
cryptography schemes.

Since “one size rarely fits all”, FIPS 140 defines
levels of increasing security, with “Level 3” is
theoretically more secure than “Level 2”. It is
important to note that these levels are not related

Figure 3 Key Encrypting Keys

 The European Test and Telemetry Conference – ettc2022 150

DOI 10.5162/ettc2022/6.1

to the version “dash” number, so that it is
appropriate to comment that FIPS 140-2 Level 2
is the most common certified level! As is usually
the case with these types of collections of
disparate requirements, many implementations
might qualify for a higher level in some areas but
are “held back” in others. So, for example, the
logical protection mechanisms (e.g., code-
signing) might warrant a higher level, but the
physical anti-tamper protections might not. It
should be noted that some anti-tamper methods
are reasonably easy to achieve but impose
consequences for the product development;
Level 3 physical security can be achieved by
“potting” all the hardware in epoxy!

One important characteristic of a module’s
certification is how and where the boundary
between it and the rest of the system is drawn. A
very tightly drawn boundary reduces the
elements that must be certified (and so
potentially reduces the overall security / value of
the module), while a broad brush will include
pieces (of software, usually) that become subject
to the restrictions of certification, so that any
updates to that software will require updating the
certificate.

A cautionary tale as to why FIPS 140 certification
(or equivalent) can be valuable comes from
security researchers who created attacks that
defeated the encryption on several non-FIPS
commodity storage devices (Meijer & van
Gastel, 2019 [8]). Their attacks included loading
modified firmware into the target devices, having
instrumented them to identify how the firmware
was intended to work. So, for example, they
created firmware that would always believe the
supplied password was correct, no matter what.
It is possibly tempting fate to assert that, had the
drives been FIPS 140 certified, their attacks
would have failed, but it is certainly true that it
would have been much harder to gain access to
the data.

Common Criteria Certification (CC, NIAP)
While the FIPS 140 certification process
provides assurance of a solid solution for many
applications, it is intrinsically an American (USA
and Canada) framework. To put another way,
the only authorities issuing certificates are the
US and the Canadian governments.

This introduces obvious issues for non-American
applications: does using the FIPS approach
implicate exportability (ITAR, etc)? How can a
non-American user (particularly sovereign
users) be assured that there was no interference
with the evaluation? (And regardless of the
likelihood of that happening, the issue is the
ability to assert that it could not have happened;

certification is always trying for absolute
assurance, not just reasonable conclusions).

The solution for both American and non-
American users lies with the Common Criteria for
Information Technology Security Evaluation
(referred to as Common Criteria or CC). This is
an international framework for providing security
certification a system. In the USA, the
responsible body for CC efforts is the National
Information Assurance Partnership (NIAP),
which is operated by the NSA.

The international members of the framework are
(currently) a total of 31 countries, slightly more
than half of which are “certificate producers” with
the rest being “certificate consumers”. Producer
nations run a full scheme including certifying labs
to evaluate products. Consumer nations agree
to accept certificates from the “producing”
nations. A program based in a “consumer”
country that wants a certified product would
simply outsource the certification to a producer
nation (Indonesia outsourcing to Australia, for
example).

Common Criteria stands in contrast with FIPS
140, as the latter is concerned solely with
cryptographic systems, while CC can be applied
to any type of system. The two schemes are very
closely related, and indeed up until 140-2 the
FIPS standard explicitly called out requirements
from the Common Criteria standard (those
requirements haven’t gone away but are now
separately and explicitly listed in FIPS 140-3).

Common Criteria is concerned with the security
functions of a product as a whole, which
obviously includes cryptography (overlapping
with FIPS 140), auditing and logging, access
controls, administrative roles, and so on. For a
data storage device, there is a lot of commonality
between the CC DaR and the FIPS 140
requirements, but enough variability (e.g., on the
drawing of a FIPS 140 boundary) to keep CC
separate from the FIPS certification.

For DaR applications, there are five potentially
relevant CC protection profiles (PP): two for full-
disk encryption, two for file-based encryption,
and one for USB flash drives. The two full-disk
encryption protection profiles boast a
“collaborative” tag – they are collaborative PPs
(cPPs), not just PPs – indicating that they’ve
been developed with a larger group of
contributors than just the US government. The
two full-disk cPPs are for the “Encryption Engine”
(the module that does the encryption) and then

 The European Test and Telemetry Conference – ettc2022 151

DOI 10.5162/ettc2022/6.1

for the “Authorization Acquisition”, which
handles key management.4

The Encryption Engine cPP [9] defines how the
data must be encrypted; slightly bizarrely, it
references the ISO/IEC standard (18033-3) [10]
for AES rather than FIPS 197, even though the
NSA’s CNSA list references the latter! The
Authorization Acquisition cPP [11] is significant
mostly because it is an entirely separate
standard, allowing the two functions to be
separated and even provided by two distinct
suppliers.

One of the ramifications of the CC authentication
certification for DaR is that it must contain the
totality of the key lifecycle, from key generation
through key transport to loading the key into the
encryption engine. This leads to the somewhat
paradoxical situation that a gold-standard, NSA-
generated secret key cannot be used in CC (or
in related standards, such as CSfC).

In the context of DaR and DiT, a standalone CC
certification is rarely required, as FIPS 140
provides a similar level of assurance in a more
narrowly focused standard; of course, when
dealing with other security accreditations, CC is
more commonly mandated. The value of the CC
DaR/DiT certification is not inherent in the
validation itself, but because the “next layer”
(e.g. CSfC, see below) uses CC certificates as
building blocks to practical, approved solutions.

Commercial Solutions for Classified (CSfC)
CSfC is a program run by the NSA which uses a
pair of layered, Common Criteria certified
encryption products to create a solution that may
be used to secure National Security Information.
The stated rationale for using two products, with
the second encrypting the output of the first, is
that this mitigates deficiencies that might exist in
the implementation of either. However, one
might recall the aforementioned “triple DES”
exists to provide a security boost over regular
DES, so it is not unreasonable to assume that
the layering provides some additional security,
even if that isn’t the public rationale for it.

Unlike FIPS 140 and CC in isolation, CSfC is
specifically designed to secure data at the levels
needed for the most sensitive of information and
is recognized by the US government for that

4 Prior to 2010, CC evaluated products according to
Evaluation Assurance Levels (EALs), of which there
are 7. The lower four (EAL1 through EAL4) were
process-based evaluations, meaning most any
system could be evaluated and certified whether or
not it met a particular function or purpose (which were
termed “robustness” evaluations). While this obviously
has value, it is at odds with the sponsoring
governments’ goal of qualifying functionally similar

purpose; unlike “Type 1”, it is also designed for
non-governmental use, such as by finance or
healthcare organizations.

CSfC provides requirements for solutions via
Capability Packages (CPs). The “Data-at-Rest
CP” [12] defines several implementation
architectures, such as a software layer on top of
a hardware one, or two full-disk software layers,
or file-based software on top of full-disk, and so
on. The most recent version of the DaR CP also
supports solutions using two hardware designs.

To help ensure that the same vulnerability does
not exist in both layers, the CSfC philosophy
requires that each layer must be produced by
different vendors (or, in the case of corporate
mergers and acquisitions, demonstrably
different teams within the same company).
Under this principle of diversity, there must be at
least two, and possibly three, organizations
involved in a CSfC solution: one each to produce
the encryption implementations, and optionally a
third to serve as an integrator of the other two.

From a functional standpoint, CSfC solutions are
as good as the traditional US Government
“Type 1” approach, but with significantly
increased versatility. First, CSfC
implementations are not “controlled
cryptographic items (CCI)”, which facilitates (and
reduces the cost of) logistics and handling and
particularly international/export applications.
Second, key handling concepts can be tailored
to the specific application and mission
requirements.

Key handling with legacy “Type 1” systems is
based entirely on the NSA’s “one size fits all”
model: all keys are generated by the NSA, and
distributed through the appropriate secure
channels, before being loaded into the
encryption device, typically using a “Secure Key
Loader”. This approach is fine when being used
within the US/NSA sphere of influence, it is
naturally impractical for commercial and
sovereign international customers.

By contrast, with a CSfC device, keys must be
“organically” created within the device (or the
ecosystem for the device). This inherently
creates significant flexibility for the design of
mechanisms to deliver keys to the encryptors.

products in a comparable and repeatable manner.
The revised approach (since 2010) substitutes the old
robustness evaluations with strict compliance with
defined protection profiles for the lower four levels,
and then retained the semiformal and formal design
analysis for the upper levels only once a protection
profile has been validated.

 The European Test and Telemetry Conference – ettc2022 152

DOI 10.5162/ettc2022/6.1

Over a longer term, by contrast with “Type 1”
solutions, CSfC requires periodic recertification
through the NSA (or equivalent), and there is
always the possibility that, during that process,
new or modified requirements may become
mandated with possible budget implications.
While this may appear a significant and
justifiable concern, real-world cybersecurity –
obviously including cryptography – demands
regular software / firmware updates to protect
against newly identified vulnerabilities. The old
model, where a single product certification
survives the life of the program, cannot be
sustained in the contemporary “connected
world”; the well-publicized attacks on certain
Intel CPUs (“Meltdown”5 and “Spectre”6) are
examples of unexpected problems that cannot
be ignored.

The value of the CSfC program can be
summarized by the following: at least one foreign
government has used the CSfC “recipe” (that is,
the CP) together with products locally certified to
Common Criteria PP standards.

The integrity of CSfC can be illustrated by noting
that, using a properly certified and structured
CSfC solution, the NSA will approve the use of
industry standard WiFi network and internet
bridges to carry US Top Secret information.

Test Data Applications
Several features common to many test
applications lend themselves to the use of FIPS
or Common Criteria.

First, test articles are frequently heavily
constrained in terms of Size, Weight and Power
(SWaP). This can pose insurmountable
challenges with integrating GOTS / legacy
devices with the required capabilities. By
contrast, FIPS/CC solutions can include
software implementations, which can be scaled
to fit the physical constraints of the application.

Second, test applications tend to involve
numerically small numbers of systems: the
largest pools of flight test recorders number in
the scale of a few dozen units, which makes the
time and expense of a “from the ground up”
encryption solution much harder to justify. But if
the virtues of certification can be obtained by
judicious selection of key components (e.g. by
using a FIPS 140 certified SSD in place of an
uncertified one), then the cost differential
becomes marginal and the schedule impact
trivial.

5 CVE-2017-5754 is the official reference to Meltdown.
CVE is the Standard for Information Security
Vulnerability Names maintained by MITRE.

Third, it is sometimes said (partially in jest) that
“encryption is easy, but key handling is a
challenge”. Using GOTS solutions or similar
tends to include a rigid key handling policy,
deviation from which (e.g. to using “test keys”)
has unknown consequences: if the test keys all
have the form ‘123456’, then it’s fair to say that
security will be compromised! More seriously,
because open certification processes like those
of FIPS and Common Criteria allow system
designers to make informed, intelligent decisions
about the consequences of changes to the
expected application. As an example, it is
possible that a designer of a DiT solution might
conclude that only FIPS 197 is required on the
test article, with the other parts that would make
up a FIPS 140 system being distributed to
ground-support equipment or other certification
efforts.

Conclusion
With the maturation of programs like FIPS and
Common Criteria, the commercial and
international market can have confidence that
"government quality” (i.e. US Government
quality) solutions can be implemented without
recourse in cost, confidentiality, or schedule to
independent developers and integrators, and
end users can have confidence that their
solutions really do provide the features and
benefits that they expect.

References
[1] National Institute of Standards and

Technology,FIPS PUB 46-3 “Data Encryption
Standard (DES)”, 25 October 1999. [Online].
Available: https://csrc.nist.gov/csrc/media/
publications/fips/46/3/archive/1999-10-25/
documents/fips46-3.pdf

[2] National Institute of Standards and
Technology,FIPS PUB 197 “Advanced
Encryption Standard (AES)”, 26 November
2001. [Online]. Available: https://doi.org/
10.6028/NIST.FIPS.197

[3] National Institute of Standards and
Technology,FIPS PUB 140-3 “Security
Requirements for Cryptographic Modules”, 22
March 2019. [Online]. Available: https://doi.org/
10.6028/NIST.FIPS.140-3

[4] M. Turan, E. Barker, J. Kelsey, K. McKay, M.
Baish and M. Boyle,SP 800-90B
“Recommendation for the Entropy Sources
Used for Random Bit Generation”, January
2018. [Online]. Available: https://doi.org/
10.6028/NIST.SP.800-90B

6 CVE-2017-5753 and CVE-2017-5715 are the official
references to Spectre. CVE is the Standard for
Information Security Vulnerability Names maintained
by MITRE.

 The European Test and Telemetry Conference – ettc2022 153

DOI 10.5162/ettc2022/6.1

[5] M. Dworkin,SP 800-38E “Recommendation for
Block Cipher Modes of Operation: the XTS-
AES Mode for Confidentiality on Storage
Devices”, January 2010. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-38E

[6] National Institute of Standards and
Technology,FIPS PUB 180-4 “Secure Hash
Standard (SHS)”, August 2015. [Online].
Available: https://doi.org/10.6028/
NIST.FIPS.180-4

[7] National Institute of Standards and
Technology,FIPS PUB 186-4 “Digital Signature
Standard (DSS)”, July 2013. [Online].
Available: https://doi.org/10.6028/
NIST.FIPS.186-4

[8] C. Meijer and B. van Gastel, “Self-Encrypting
Deception: Weaknesses in the Encryption of
Solid State Drives”, in IEEE Symposium on
Security and Privacy, San Francisco, CA,
USA, 2019. Available:
https://doi.org/10.1109/SP.2019.00088

[9] National Information Assurance Partnership,
“collaborative Protection Profile for Full Drive
Encryption - Encryption Engine”, 1 February
2019. [Online]. Available:
https://www.niap-ccevs.org/MMO/PP/CPP_FD
E_EE_V2.0E.pdf

[10] International Standards Organization,ISO/IEC
18033-3:2005 “Information
technology - Security techniques - Encryption
algorithms - Part 3: Block ciphers”, July 2005.
[Online]. Available: https://www.iso.org/
standard/37972.html

[11] National Information Assurance Partnership,
“collaborative Protection Profile for Full Drive
Encryption - Authorization Acquisition”, 1
February 2019. [Online]. Available:
https://www.niap-ccevs.org/MMO/PP/
CPP_FDE_AA_V2.0E.pdf

[12] National Security Agency Central Security
Service, „Data-at-Rest Capability Package
V5.0“,18 November 2020. [Online]. Available:
https://www.nsa.gov/Portals/75/documents/
resources/everyone/csfc/capability-packages/
Data-at-Rest%20Capability%20Package%20v
5.0.pdf

