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Summary:
A co-calibration method suited only for (strictly) homogeneous sensor networks is applied to distributed 
homogeneous sensor networks. This is achieved by relying on spatial and temporal interpolation models 
to provide virtual reference measurement points at the location of the device under test. The interpolation 
method is evaluated in a simulation of an existing real-world use case dealing with room-temperature 
monitoring using distributed sensors.
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Background and Motivation
Current work by the authors is focused on uncer-
tainty-aware co-calibration of local homogene-
ous sensors, as well as spatial interpolation us-
ing machine-learning approaches [1].

Requiring sensors to be quasi non-distributed is 
a strong assumption that greatly limits the poten-
tial applicability of co-calibration in practical sce-
narios. To overcome this limitation, it is shown 
that distributed sensors can provide virtual refer-
ence values by augmenting interpolation models 
with GUM uncertainty evaluation [2]. Moreover, 
multiple interpolation models can be evaluated in 
parallel at a given spatio-temporal point, which 
can then be robustly combined via sensor fusion 
into a single virtual reference measurement. The 
approach is implemented inside a proof-of-con-
cept simulation environment representing tem-
perature sensors distributed inside a room.

Idea Outline
A co-calibration is similar to a calibration accord-
ing to the VIM [3], but is carried out under non-
ideal conditions, e.g., inside an industrial pro-
cess. The result of a co-calibration method are 
traceable estimates of parameters characteriz-
ing a sensor’s transfer behavior (e.g., linear-af-
fine). It is of interest to provide a method for co-
calibration of homogeneous sensors that is ca-
pable to also operate on spatially distributed and 
temporally non-synchronous input measure-
ment. 

Such a co-calibration involves spatial and tem-
poral interpolation with a use case specific 
model. The interpolation model has the available 
measurements by reference devices as inputs 
and provides virtual reference measurements at 

the spatio-temporal positions required for the co-
calibration of the device under test. The interpo-
lation model can thus be interpreted as a means 
of performing virtual measurements.

Setting
Consider the case of 𝑁𝑁 distributed calibrated ref-
erence sensors monitoring a quantity 𝜙𝜙(𝑥⃗𝑥, 𝑡𝑡).
The 𝑛𝑛-th (𝑛𝑛 = 1, … ,𝑁𝑁) reference sensor is spa-
tially located at 𝑥⃗𝑥𝑛𝑛 and provides estimates 
𝜙̂𝜙𝑛𝑛(𝑥⃗𝑥𝑛𝑛, 𝑡𝑡𝑛𝑛,𝑗𝑗) of 𝜙𝜙 at discrete points in time 𝑡𝑡𝑛𝑛,𝑗𝑗.
Sensor readings are not expected to be synchro-
nized but are assumed to refer to the same time 
base. Locations and timestamps could also have 
associated uncertainty. The co-calibration ex-
pects 𝑀𝑀 time-series of length 𝐾𝐾 as reference 
measurement 𝜙̂𝜙𝑚𝑚

∗ (𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑡𝑡𝑘𝑘) with uncertainty 
𝑢𝑢 (𝜙̂𝜙𝑚𝑚

∗ (∘)) at the position 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 of the device under 
test as well as its indicated values 𝑦𝑦(𝑡𝑡𝑘𝑘) at the 
same consecutive time-points 𝑡𝑡𝑘𝑘 with 𝑘𝑘 =
1, … ,𝐾𝐾. From the input, the co-calibration itera-
tively estimates the parameters (𝑎𝑎, 𝑏𝑏, 𝜎𝜎𝑦𝑦) of a lin-
ear-affine transfer behavior with gain 𝑎𝑎, offset 𝑏𝑏
and noise 𝜀𝜀 ∼ 𝒩𝒩(0,𝜎𝜎𝑦𝑦2) using Bayesian updates.
The sensor’s transfer model is assumed to be 
given by

𝑦𝑦(𝑡𝑡𝑘𝑘) = 𝑎𝑎 ⋅ 𝜙𝜙(𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑡𝑡𝑘𝑘) + 𝑏𝑏 + 𝜀𝜀𝑖𝑖 .
As it can in general not be expected that 𝑥⃗𝑥𝑛𝑛 =
𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 or 𝑡𝑡𝑛𝑛,𝑗𝑗 = 𝑡𝑡𝑘𝑘 for any 𝑛𝑛, 𝑗𝑗 or 𝑘𝑘, the available 
measurement data from the reference sensors 
does not match the input requirements of the co-
calibration routine. The task to be solved is to ob-
tain an estimate 𝜙̂𝜙𝑚𝑚

∗ (𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑡𝑡𝑘𝑘) (and corresponding 
uncertainty) of 𝜙𝜙 at location 𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑 and timestamps 
𝑡𝑡𝑘𝑘 by means of interpolation. 
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Methods 
A method to carry out uncertainty-aware interpo-
lation in space using Kriging methods was re-
cently investigated [1]. This method can also be 
extended to cover the asynchronous case. The 
time-signal of each reference sensor is first inter-
polated onto the same synchronized timestamps 
𝑡𝑡𝑘𝑘, e.g., using [4]. A spatial Kriging interpolation 
is then applied to each of these timestamps 𝑡𝑡𝑘𝑘, 
resulting in functions over time that can be eval-
uated at the position of the device under test 
𝑥⃗𝑥𝑑𝑑𝑑𝑑𝑑𝑑. 
Here, another approach is presented that does 
not interpolate independently in time and space, 
but simultaneously using an adjusted 4D nearest 
neighbor regression. In a rather low-informative 
approach, the quantity field 𝜙𝜙(𝑥⃗𝑥, 𝑡𝑡) over some fi-
nite time interval is approximated in a local multi-
dimensional first order approach. 

𝜙̃𝜙(𝑥⃗𝑥0, 𝑡𝑡0) = ∇⃗⃗⃗𝑠𝑠 ⋅ ([
𝑥⃗𝑥0
𝑡𝑡0 ]

− [𝑥⃗𝑥𝑠𝑠𝑡𝑡𝑠𝑠 ]
) + 𝜙𝜙𝑠𝑠 

Where the gradient ∇⃗⃗⃗𝑠𝑠, offset 𝜙𝜙𝑠𝑠 and point of sup-
port 𝑥⃗𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠 are obtained from available reference 
data of the nearest 𝐿𝐿 measurement points using 
heuristics and a least-squares fit. Neighborhood 
is defined by the “p=2”-norm of a combined spa-
tio-temporal vector [𝑥⃗𝑥𝑡𝑡]. The neighborhood of 
(𝑥⃗𝑥0, 𝑡𝑡0) is denoted as 𝒩𝒩𝐿𝐿(𝑥⃗𝑥0, 𝑡𝑡0) and the interpo-
lation model given by: 

𝜙𝜙𝑠𝑠 = median(𝜙̂𝜙𝑛𝑛(𝑥⃗𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛,𝑗𝑗)  ∶ (𝑛𝑛, 𝑗𝑗) ∈ 𝒩𝒩𝐿𝐿(𝑥⃗𝑥0, 𝑡𝑡0)) , 

𝑥⃗𝑥𝑠𝑠 = mean({𝑥⃗𝑥𝑛𝑛 ∶  (𝑛𝑛, 𝑗𝑗) ∈ 𝒩𝒩𝐿𝐿(𝑥⃗𝑥0, 𝑡𝑡0)}) , 

𝑡𝑡𝑠𝑠 = mean({𝑡𝑡𝑛𝑛,𝑗𝑗 ∶  (𝑛𝑛, 𝑗𝑗) ∈ 𝒩𝒩𝐿𝐿(𝑥⃗𝑥0, 𝑡𝑡0)}) , 

𝛻⃗⃗𝛻𝑠𝑠 = argmin
∇⃗⃗⃗

∑ ‖𝜙̂𝜙𝑛𝑛(𝑥⃗𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛,𝑗𝑗) − 𝜙̃𝜙(𝑥⃗𝑥𝑛𝑛 , 𝑡𝑡𝑛𝑛,𝑗𝑗)‖(𝑛𝑛,𝑗𝑗)∈𝒩𝒩𝐿𝐿(𝑥⃗𝑥,𝑡𝑡))  . 

The parameters ∇⃗⃗⃗𝑠𝑠,𝜙𝜙𝑠𝑠 have associated uncer-
tainties. The uncertainty 𝑢𝑢(𝜙𝜙𝑠𝑠) is given by those 
of the median element(s). The covariance matrix 
𝑈𝑈(∇⃗⃗⃗𝑠𝑠) is obtained from a (repeated) Monte-
Carlo-evaluation of the minimization routine. Ap-
plying the “law of propagation of uncertainty” [2] 
then yields for the uncertainty of 𝜙̃𝜙(𝑥⃗𝑥, 𝑡𝑡): 

𝑢𝑢 (𝜙̃𝜙(𝑥⃗𝑥0, 𝑡𝑡0)) = √([𝑥⃗𝑥0𝑡𝑡0 ]
− [𝑥⃗𝑥𝑠𝑠𝑡𝑡𝑠𝑠 ]

)𝑈𝑈(∇⃗⃗⃗𝑠𝑠) ([
𝑥⃗𝑥0
𝑡𝑡0 ]

− [𝑥⃗𝑥𝑠𝑠𝑡𝑡𝑠𝑠 ]
)
𝑇𝑇

+ 𝑢𝑢(𝜙𝜙𝑠𝑠)2. 

Interpolation schemes based on different (poten-
tially overlapping) neighborhoods could be used 
in parallel. A consequence of the chosen model 
for 𝜙𝜙 is an increased uncertainty for the interpo-
lated value at points further away from the point 
of support. 

Application 
The outcome of applying the proposed interpola-
tion method to a simulated temperature room 
use case is shown in Figures 1 and 2. The true 

field is given by the following equation (with spa-
tially dependent amplitude, offset and phase): 

𝜙𝜙(𝑥⃗𝑥, 𝑡𝑡) = 2|𝑥⃗𝑥| + |𝑥⃗𝑥| ∗ sin(𝑡𝑡 + |𝑥⃗𝑥|) 

Depending on the distribution of the sensors 
(black circles in Figure 2), closer reference 
measurements result in better estimates of the 
field 𝜙𝜙. The GUM-propagated uncertainty of the 
second interpolation model supports this obser-
vation by providing higher uncertainty values in 
regions (4D) that are further away from existing 
reference measurements. 

 
Figure 1: Interp. at position of an existing sensor. 

 
Figure 2: Interpolation at t=6 over the obs. volume. 
Sensor positions are drawn as black circles. 

Conclusion and Outlook 
Two uncertainty-aware spatio-temporal interpo-
lation methods are proposed. One is presented 
in detail to use non-synchronized spatially dis-
tributed sensor network data as input for a ho-
mogeneous co-calibration method. Both ap-
proaches propagate the uncertainty into the in-
terpolated value, but do not weight measurement 
data based on uncertainty. 

It is of interest to further adapt, compare and ex-
plore existing and new interpolation schemes.  
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