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Abstract: The design of modern sensors, which are often Micro-Electro-Mechanical Systems
(MEMS), strongly depends on the availability of appropriate computer aided engineering (CAE)
tools, since the fabrication of each prototype is quite costly. We present the finite network as well
as the Finite Element (FE) approach used for the design of a silicon microphone, and how both
methods in combination are indispensable tools for an efficient development process.

1 Introduction

In most cases, the fabrication of prototypes within the design process of modern sensors is a
lengthy and costly task. Therefore, the need for reliable and usable computer modeling tools
capable of precisely simulating the multi-field interactions is increased. These computer-aided
engineering (CAE) tools offer many possibilities to the design engineer. Arbitrary modification
of sensor geometry and selective variation of material parameters are easily performed and the
influence on the sensor behavior can be studied immediately. In addition, the simulation provides
access to physical quantities that cannot be measured, and simulations strongly support the insight
into physical phenomena. Thus, a CAE-based design can tremendously reduce the number of
necessary prototypes. However, we want to emphasize that a direct physical control of the sensor
design is possible only with the help of experiments, whereas the computer simulation is always
based on a model of reality. Therefore, the quality of the results depends on the suitability of the
physical model as well as the material parameters [6].

In an early state of the design process it is often advantageously to base the modeling for
the numerical simulation on a system of ordinary differential equations (ODEs), which uses finite
network elements [1]. Therewith, the engineer can check, if the design goals can be roughly achieved.

Figure 1: Principle setup of the investigated silicon microphone [3].
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In the second step, one needs mostly a very accurate model, which will result in a system of coupled
partial differential equations (PDEs), which are mainly solved by applying the Finite Element (FE)
method [4].

Within this contribution, we will concentrate on the simulation based development of a silicon
microphone as displayed in Fig. 1.

2 Finite Network Approach

The finite network approach bases the model on a physical level and tries to put the spatial
dependency of the physical fields into network elements. Since we focus on acoustic transducers,
we have to deal with electric, mechanical and acoustic systems and need analogies in order to achieve
an appropriate electric network. In this sense, we define the quantities as listed in Tab. 1 (complex
quantities are marked by an underline). To achieve at an electric network, we will use the pU and

Table 1: Mechanical, electrical and acoustic networks

v : velocity I : current wm, mm,nm : mechanical damping, mass, compliance
F : force p : pressure wa, ma,na : acoustic damping, mass, compliance

U : voltage q : volume flow R, L, C : electric resistance, inductance, capacitance

Network Potential Flow Impedance Passive elements
quantity quantity

Mechanical v F Zm = F/v Zmw = wm Zmk = 1/(jωnm) Zmm = jωmm

Electrical U I Ze = U/I ZeR = R ZeL = jωL ZeC = 1/(jωC)

Acoustic p q Za = p/q Zaw = wa Zam = jωma Zak = 1/(jωna)

FU analogy. Furthermore, we transform the mechanical elements to their corresponding acoustic
elements by Za = Zm/A

2 with A the appropriate cross section [7]. Therewith, the next step will
be to deriving a two-port equivalent circuit, which converts the acoustic quantities pressure and
volume flow to the electrical ones voltage and current. Linearizing the relations at the operating
point, which is defined by the electrical pre-stressing with U0 [1]
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and the equivalent circuit is displayed in Fig. 2. The individual elements compute by
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where x∗ is the air-gap at the operating point (electrical pre-stressing with U0), A the electrode
surface, ε0 the permittivity of vacuum, C0 the electric capacitance at x∗, naM the mechanical
compliance of the membrane already transformed to the acoustic side and Γ the transducer constant.
In a last step, we plug this equivalent circuit into the overall acoustic network for the transducer as
displayed in Fig. 3. All the electric resistances, inductances and capacitances model acoustic and
mechanical damping, mass and stiffness. Starting at the sound source, we model:

• the opening of the housing by an acoustic damping Rin and mass Lin
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Figure 2: Linear equivalent circuit for the electrostatic transducer.

Figure 3: Acoustic network including the electrostatic transducer (linearized at the working point).

• the acoustic stiffness of the cavity between opening of the housing and membrane by Cin

• the acoustic radiation of the membrane by Rrad and Lrad

• the mass and stiffness (including the electrostatic softening) by LM and C∗

M

• the hole for pressure balance by Rvent and Lvent

• the compliance of the air-gap by Cgap

• the acoustic flow in the air-gap from the membrane to the backplate holes and through them
by Rgap, Rbp and Lbp

• the compliance of the back volume CV .

Therewith, we have achieved an overall model of the silicon microphone, and we can quickly
check, if the design goals can be roughly achieved. However, realistic values for the individual
elements are missing, which could be obtain by measurements. The problem is just that at this
stage of the development process, we do not have a prototype and so the most appropriate way is to
use the FE method, which accurately solves the underlying PDEs. As an example, we demonstrate
in Fig. 4 the results of compliance computations of advanced membrane designs with corrugations,
which minimizes the residual stress due to fabrication. Since we just consider one-dimensional
deformations in finite network models, we compute the mechanical compliance nm of the corrugated
membrane from the FE results as follows

nm =

∫ ∫
w(x, y) dxdy

Fp

. (4)
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Figure 4: Computed membrane compliance over corrugation rate.

In (4) w(x, y) is the mechanical deflection and Fp the applied pressure force. To fit an analytical
formula for nm used in the finite network approach, we perform this computations for different
corrugation rates hc/t and apply a standard least squares optimization.

3 Finite Element Approach

The challenges for FE based simulations of acoustic electrostatic-mechanical transducers as the
silicon microphone can be summarized as follows. First, one has to deal with three physical fields,
the acoustic, the electrostatic and mechanical field. Secondly, the coupling mechanisms between
the physical fields have to be taken into account, which are for the electrostatic-mechanical one
highly nonlinear. Due to the electrostatic force, the mechanical structure is subjected both to
rigid motions and elastic deformations. Furthermore, the change on the structure (air-gap) in turn
strongly influences the electric field and thus the electrostatic force distribution. Using predictor
values for the electric potential in order to compute the electrostatic force and predictor values for
the mechanical displacement to update the configuration for the computation of the electrostatic
field, we can split the coupled system of partial differential equations into a mechanical part and an
electric part. To guarantee a full coupling between the two fields, we perform an iterative solution
process. The convergence test is based on the following stopping criterion[4]

||un+1
k+1

− u
n+1
k
||2

||un+1
k+1
||2

< δo , (5)

with u the nodal vector of mechanical displacements, δo an adjustable accuracy (in practice
10−2−10−3), || ||2 the L2-norm, k the iteration counter for the outer loop (electrostatic-mechanical
iteration) and n the time step number. For the successful application of this scheme, we need an
accurate method for the electrostatic force computation and an efficient treatment of the mov-
ing/deforming body problem.

• Computation of electrostatic force:

The electrostatic force acting on the mechanical structure is computed via the virtual work

principle. Therewith, the electrostatic force Felec in the direction of a virtual displacement
δr computes by the virtual change of the electrostatic energy δWelec according to

δWelec = Felec · δr . (6)
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We have extended the method given in [2] for the computation of the local force distribution
acting on electrically charged mechanical structures within an electrostatic field. For details
we refer to [4].

• Treatment of a moving body in an electric field:

Due to a movement and/or deformation of the mechanical structures in electrostatic devices,
the finite elements for computing the electrostatic field will be deformed, and thus will cause
numerical inaccuracy. These deformations have to be controlled, and a re-meshing of the
simulation domain has to be performed before an intersection of finite elements occurs. To
avoid this problem, we have developed a smoothing mesh technique. We apply the mechanical
deformations of the structures as Dirichlet boundary conditions in a subsequent pseudo-
mechanical computation such that all finite elements within the electrostatic computational
domain (in our case the region between the deformable electrode and the back electrode)
gets somehow uniformly deformed. This is displayed in Fig. 5 for subsequent time steps, in
which the deformation of the mechanical structure strongly increases. As lon as no contact
problems are considered, this method is efficient, since no re-meshing is necessary.

Figure 5: Moving mesh technique.

The described computational scheme has been implemented in the FE software CFS++[5], and
successfully applied to many practical applications. Here, we will apply it for the computation of
the total harmonic distortion (THD) of the silicon microphone, which calculates as

THD =

√

∑

∞
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i

√

∑

∞

i=0
S2

i

(7)

with Si the i-th higher harmonic of the receiving signal S. The THD is the limiting factor for
the use of micromachined microphones at high pressure levels. The membranes used in such
microphones are deflected strongly, and show a nonlinear mechanical behavior. Furthermore, the
nonlinearity due to the electrostatic force accounts to the THD. We have simulated the dynamic
reception signals of the silicon microphone with corrugated membranes (see. Fig. 6(a)) excited by
a 114 dB SPL signal at 1 kHz. The measured output voltage of the microphone (electric circuit
with DC-biasing voltage source and preamplifier) is direct proportional to the change of the electric
capacitance. Therewith, we have performed a transient simulation and have computed the THD
from the obtained capacitance. The comparison of measured and computed THD values are listed
in Tab. 2, and Fig. 6(b) displays the frequency spectrum of the capacitance change for design M1.
This clearly demonstrates, that for such investigations, an advanced computational scheme solving
the PDEs with their couplings is indispensable.
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(a) Corrugated membrane (b) Frequency spectrum of normalized change in ca-
pacitance for the microphone with membrane M1

Figure 6: Corrugated membrane and frequency spectrum of the capacitance change

Table 2: Total Harmonic Distortion (THD) of silicon microphones with different membranes M1-M4
for SPL=114 dB at 1 kHz

M1 M2 M3 M4

measured 13.6% 2.1% 1.7% 1.4%
simulated 12.6% 2.7% 2.3% 1.6%
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