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Summary:

Smart intelligent sensor systems are key for many application areas in the domain of ubiquitous com-
puting like embedded autonomous systems, wireless sensor networks, internet of things and wearables.
In this article, we provide an overview of recent approaches to improve the design, structure and de-
ployment of machine learning methods for smart sensor systems in order to make them as lightweight 
and energy efficient as possible. The techniques considered cover both hardware and software per-
spectives.
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Introduction
Smart Sensor Systems combine advanced sig-
nal processing and data-fusion techniques with 
machine learning (ML) algorithms to ensure low-
latency processing of sensor and measurement 
data directly at the edge device. They found nu-
merous applications in Industry 4.0, IoT, medical
diagnostics, smart cities, autonomous embed-
ded systems etc.

In recent years, a growing interest in optimizing 
machine learning methods with respect to their 
energy efficiency can be observed as challeng-
ing and attractive research topics in both aca-
demia and industry. In particular, facing a recent 
global energy crisis, it seems more appropriate 
than ever to improve the energy efficiency of AI 
methods and their sparing use of computational 
resources, as used in countless smart sensing 
devices worldwide. 

Optimization Methods
As discussed, optimizing the resource efficiency 
for smart sensor systems is a crucial point to en-
sure the viability of a TinyML approach. Key re-
quirements of intelligent sensor systems are low-
latency processing at a high data rate, high reli-
ability, data security and a long battery life-
time[3]. During the development life cycle of 
such systems, there are multiple optimization 
points that a developer can utilize for efficient 
processing at the edge. In the following, we will 
go through the life cycle step by step to highlight 

possible optimization mechanisms and pitfalls to 
ensure the most efficient execution. In this short 
overview we will cover the hardware side only 
briefly and focus on methodical optimizations on
the software side.

Pre-processing and Feature Extraction
Before any data is fed into the ML-pipeline, the 
sensor data needs to be prepared to be more ef-
ficiently processed. At this point, denoising and 
data filtering methods can be applied, so that 
only needed data is passed to the model. After 
the data preprocessing step, the remaining sen-
sor data is fed into the feature extraction stage. 
Here, the dimensionality is reduced to contain 
only relevant information. This has the benefit of 
quicker training and the possibility to use more 
efficient models in the next stage. However, cre-
ating a viable set of features can be hard to 
achieve. Usually, some sort of expert knowledge 
is needed to identify patterns, possible transfor-
mations or meaningful statistical moments. Addi-
tionally, some features might not be as influential 
as others and may therefore be left out. To over-
come this issue, feature pruning or search can 
be included in the process. This is achieved by 
either tracing back through the machine learning 
model to find the most relevant inputs [4] or by 
applying search algorithms like random search, 
genetic algorithms or reinforcement learning.
Additionally, a standard feature extraction might 
be unnecessary in the case of NNs, which inher-
ently identifies meaningful input data in the 
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training process but come with the downside of 
increased computational complexity. 
Machine Learning Model Optimization 
After feature extraction, a machine learning algo-
rithm is applied to transform the given inputs into 
the desired output format. We divide possible op-
timizations into two groups: Ante and post-hoc 
optimization. The first one can be applied before 
the actual training and comes down to a meta-
approach of choosing the most efficient classi-
fier. In a greedy fashion, the most efficient model 
wrt. energy usage and precision can be selected. 
It must be noted that for suitable models not only 
different kinds of neural networks (NNs) should 
be considered. Even though a neural architec-
ture search is an applicable approach to find ef-
ficient models, classical methods like decision 
trees might be a suitable option with a good 
working feature extraction. 

Post-hoc optimization can be applied after train-
ing. This step is very dependent on the chosen 
ML-Method but can broadly be described in ei-
ther reducing the bit width of calculations or leav-
ing out unnecessary parts of the model. The first 
one is referred to as quantization [2], which 
brings down a model from floating point to inte-
ger 8-bit precision or lower. The second ap-
proach falls into the category of pruning, which 
might be pruning branches in a decision tree, 
omitting classifiers in an ensemble, or leaving 
out neurons in a NN [2]. 

Hierarchical Machine Learning 
In some applications it might be possible to di-
vide a classification into smaller sub-tasks. In a 
divide-and-conquer fashion, instead of using one 
ML-model to solve the task, smaller and more ef-
ficient models are used. Consider an industry 4.0 
scenario with a smart accelerometer to find bear-
ing damages in a machine. A standard approach 
would be to classify every time frame of sensor 
data with a big NN or a support-vector-machine. 
In the hierarchical case, we can implement an 
event-wake-up-trigger and split the task into 
three stages: Anomaly detection, fault localiza-
tion and severity classification. Because of the 
smaller sub-problems, the first stage can be 
solved with a linear classifier, the second one 
with a random forest and the third one with a se-
lection of tree-based classifiers [1]. 

Hardware selection 
From the hardware perspective, the platform can 
highly impact the resulting efficiency of a system 
and must be selected alongside with the soft-
ware. The algorithms should be tested for the 
lowest precision possible and for the need of 
floating point calculations. Most optimally, all cal-
culations can be done in 16 or 8 bit and a floating 

point unit can be omitted. Additionally, further 
hardware modules are helpful to accelerate the 
execution of certain algorithms. Usually, the 
more specialized an acceleration unit is, the 
more efficient the execution becomes if the algo-
rithm can utilize it. A DSP-unit is one of the 
broader kind of accelerators, which can optimize 
various calculations like vector/matrix opera-
tions, Fourier-transformations, or statistics. Fur-
thermore, typical SIMD-Accelerators like vector 
or neural processing units can accelerate both 
NNs and matrix-operations. NNs can also utilize 
extremely specialized hardware like analog Neu-
romorphic circuits, which can cut down latency 
and energy usage drastically [5]. A final consid-
eration when picking hardware platform(s) is 
software support. A lot of silicon manufacturers 
and IP-providers are delivering software-librarys 
alongside their chips that help to utilize their 
hardware more efficiently. Typical examples for 
that are ARM-CMSIS or STM32-Cube AI. 

Conclusion and Outlook 
We presented an overview of methods to im-
prove the efficiency of machine learning algo-
rithms for smart sensor systems. Depending on 
the application or ML-model, these can be ap-
plied before, during, or after training an ML 
model. Existing results show that a good trade-
off between model efficiency and accuracy can 
be achieved, significantly increasing efficiency 
(e.g. reduction of 47% energy consumption [1]) 
without sacrificing the ML model accuracy and 
fidelity. 
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