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1. Abstract 
During the last years the amount of energy gained from renewable energy sources was steadily 
increasing and this is still under development. A big role is played by offshore wind parks, which use the 
wind energy over the see for electricity generation. In order to reduce the high maintaining costs of these 
plants, different online condition monitoring systems are currently being developed. Especially condition 
monitoring of gear-oils promises to have an important impact on such maintaining costs. A well-known 
off-line method for gear-oil quality monitoring is based on the evaluation of their Infrared (IR) spectra. 
The analysis of IR spectra, which is performed in specialized laboratories together with other chemical 
and mechanical tests, is a common tool for lubricant quality evaluation. Important oil parameters affect 
the IR spectra and can be therefore deduced and classified by spectral analysis. A significant parameter 
is the Total Acid Number (TAN). The importance of the TAN value lies in its relation with the oil’s “age”. 
In this paper, a preliminary study of gear-oil classification by means of TAN in combination with Support 
Vector Machines (SVMs) is presented. The Mid-Infrared-spectra (MIR-spectra) of three commercially 
used gear-oils, a mineral and two synthetic ones, were analyzed and classified according to the range of 
their TAN value. The classification was performed using up to five classes and tested using full cross 
validation. The classification results were compared using different kernel functions. The robustness 
against noise is tested by adding different noise levels to the spectra before classification. This latter 
leads to a first feasibility check for classifying spectra gained in field application, under rough conditions. 

2. Introduction 
Energy demand is steadily increasing and more and more attention is paid to safeguarding the 
environment. In this context wind power is one of the most promising green energy sources, especially 
the one produced in offshore power plants. One problem of these plants is given by their high 
maintenance costs, from them a considerable part is related to corrective tasks. One way to avoid these 
corrective tasks is performing a preventive maintenance of the plant. One important preventive action 
consists in controlling the gear-oil. This control is performed by regularly oil sampling from the wind 
turbine gear and analyzing it later in specialized laboratories. An established diagnostic method for such 
analysis is the Fourier-transform-infrared-spectroscopy (FTIR-spectroscopy), which provides relevant 
information about chemical and lubricating properties of the oil sample. However, one big disadvantage of 
laboratory analysis is the time delay between sampling and result submission. During this time a problem 
could cause an unscheduled shutdown.  
One alternative to the off-line analysis in laboratories is the implementation of different in-situ 
measurement systems along the plant. In-situ condition monitoring of important system components such 
as gear boxes, allows real time detection of random, time discrete events with a reliable registration [1]. 
This latter enables better scheduling of preventive maintenance actions and contributes to reducing costs 
and downtime. However, FTIR-spectrometers, such as those used in laboratories, are not best suited for 
in-situ condition monitoring because of their dimensions and related costs. Miniaturized IR-spectrometers 
for in-situ applications are already under development [2]. 
One of the most important parameter for oil quality classification is the Total Acid Number (TAN). This 
parameter is a measure of the sample acidity [3] and a proxy variable for oil “age”. In previous works, the 
TAN values have been deduced from IR-spectra using Partial Least Squares Regression (PLSR) [4]. 
However, in many applications, a value prediction is not strictly necessary. A classification of the 
measured sample in two, three or more groups according to the TAN is fully sufficient. 
An established classifier is the Support Vector Machine (SVM). This is a computer algorithm that learns 
by examples (training) to assign labels to the analyzed objects. This tool finds its application in many 
different fields like, image [5], financial [6] and spectroscopic data processing [7], [8]. The foundations of 
SVM have been developed in the late seventies [9], but SVM began to receive a bigger attention in the 
nineties. The formulation of SVM embodies the Structural Risk Minimization (SRM) principle, which has 
been shown to be superior to the traditional Empirical Risk Minimization (ERM) principle used by 

P5.2

16. GMA/ITG-Fachtagung Sensoren und Messsysteme 2012 780

DOI 10.5162/sensoren2012/



conventional neuronal networks. A representative set of oil spectra is used to train the SVM. For a 
successful training, all considered classes of TAN ranges must be well represented in this set. As the 
SVM is a supervised classifier, it is necessary to indicate manually to which TAN range belongs each 
spectrum of the training set. The SVM implementation used in this work is the LIBSVM [10]. For solving 
multi-class problems, like the one presented in this paper, the LIBSVM uses the “one-against-one” 
approach [10].  
The evaluation of results is performed using the “Leave One Out” (LOO) method (also known as full cross 
validation). The LOO method consists in training the SVM with all spectra in the training set except for 
one. The testing is then carried out on the spectrum that was not considered in the training. This 
procedure is repeated for all spectra in the training set. 

3. Material and Methods 
For the classification task, three commercially available wind turbine gear-oils, a mineral and two 
synthetic ones (Fig. 1), were analyzed. These three oils were chosen because they are the most used in 
wind turbines gear-boxes. The synthetic ones are Polyalphaolefin (PAO) oils, where Oil-2 has a higher 

ester component than Oil-3. Both, the transmittance IR spectra  and the absorbance IR spectra 
 will be used for the classification, where  denotes the wavenumber given in cm-1. Absorbance 

spectra are commonly used for spectroscopic data processing. The relation between both spectra is 
given as follows [11]: 

 . (3.1) 

 

3.1 Choosing the best spectral range 
For quantitative analysis of absorbance spectra, the Bouguer–Beer–Lambert law [11], also known as 
Beer’s law, has to be respected. This law states that the component’s concentrations in a homogeneous 
solution is linearly proportional to the intensities of the corresponding absorbance peaks until the 
absorbance level is below 2.5 (a. u.) [4], [11]. In order to keep the relationship linear, the following regions 
were excluded for both, the transmittance and the absorbance spectra: [3067 – 2758] cm-1, [1500 – 
1330] cm-1. 
The spectral region between = 1500 cm-1 and  = 500 cm-1 is called “fingerprint region”, because their 
spectral features are characteristic and unique for each sample. In this work, a comparison between 
using only the fingerprint region and the full spectrum for classification is presented. 

3.2 Selecting classes and SVM parameters 
The complete range of TAN values of interest was subdivided into up to five classes. For the case with 
two and three classes, the gap between the classes was set to 10% of the considered TAN value range. 
For the other case, four and five classes, the gap was set to 5% of the TAN value range. Tab. 1 shows 
the range values for each class for the different considered oils. For the presented experiments, each 
class was represented by spectra with a uniformly distributed TAN. 

 
Fig. 1 Transmittance IR-spectra of the analyzed gear-oil types. Oil-1 (red line) is a mineral gear-oil, Oil-2 (blue 

line) and Oil-3 (green line) are synthetic ones. Oil-2 has a higher ester component than Oil-3. 
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All tests were performed using LIBSVM [10] with six different kernel functions: linear, radial basis (RBF), 
sigmoid and 2nd, 3rd and 4th order polynomial function. Before training the spectral values were scaled 
between -1 and 1 according to [12]. Further scaling values were proved in later tests. The trained models 
were tested using LOO validation. 
In order to define the proper number of spectra per class used by training, the tests were repeated using 
30 up to 100 uniformly distributed spectra for each class. Furthermore, for the cases of classifying into 
two and three classes the number of spectra was increased up to 500 spectra per class. The computation 
time was also taken into consideration in order to evaluate the classification performance. 
Finally, in order to optimize the classification accuracy using the model based on the linear kernel 
function, the penalty parameter C [ref] was analyzed using the method proposed by [10]. 

3.3 Model Robustness against Noise 
After parameter optimization, in order to get the best classification accuracy, the approach robustness 
against noise was tested. This was performed training the system with the original spectra, which present 
very low noise, and adding different noise levels on the spectra used for testing the model. We chose to 
add white noise, which is not correlated to the measured signal. For white noise simulation we added on 
each spectral point a random value between ±0.5%, ±1%, ±1.5%, ±2%, ±3%, ±5% and ±10% of the 
maximal spectral value. While increasing the noise level, the degradation of the prediction rate was 
analyzed. 

4. Results and Discussion 
As explained in section 3.1, six kernel functions were used for classification of transmittance and 
absorbance spectra of the three oil types under test. The classification was performed using 50 spectra 
per class. 
As shown in Tab. 2 for transmittance spectra of Oil-1, the classification accuracy decreases clearly with 
increasing number of classes. The same behavior was noticed for Oil-2 and Oil-3. 

Tab. 1 Sub-division of the TAN values into up to five classes for each oil type. The values are given in 
mgKOH/g (milligram potassium hydroxide per oil gram). The gap between the different classes corresponds to 
10% of the considered TAN value range for the case of two and three classes, and to 5% for the case of four 

and five classes. 
Oil-1 
TAN range (mgKOH/g)  Class 1 Class 2 Class 3 Class 4 Class 5 

2 Classes 0.205 – 0.745 0.755 – 1.195 - - - 
3 Classes 0.205 – 0.462 0.572 – 0.828 0.938 – 1.195 - - 
4 Classes 0.178 – 0.398 0.453 – 0.673 0.728 – 0.948 1.003 – 1.223 - 
5 Classes 0.178 – 0.343 0.398 – 0.563 0.618 – 0.783 0.838 – 1.003 1.058 – 1.223 

 
Oil-2 
TAN range (mgKOH/g)  Class 1 Class 2 Class 3 Class 4 Class 5 

2 Classes 0.405 – 0.845 0.955 – 1.395 - - - 
3 Classes 0.405 – 0.662 0.772 – 1.028 1.138 – 1.395 - - 
4 Classes 0.378 – 0.598 0.653 – 0.873 0.928 – 1.148 1.203 – 1.423 - 
5 Classes 0.378 – 0.543 0.898 – 0.763 0.818 – 0.983 1.038 – 1.203 1.258 – 1.423 

 
Oil-3 
TAN range (mgKOH/g)  Class 1 Class 2 Class 3 Class 4 Class 5 

2 Classes 2.434 – 3.115 3.285 – 3.965 - - - 
3 Classes 2.434 – 2.832 3.002 – 3.398 3.568 – 3.965 - - 
4 Classes 2.393 – 2.733 2.818 – 3.158 3.243 – 3.583 3.668 – 4.008 - 
5 Classes 2.393 – 2.648 2.733 – 2.988 3.073 – 3.328 3.413 – 3.668 3.753 – 4.008 
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In Tab. 2 can also be seen that the linear and the 3rd order polynomial kernel function deliver the best 
classification results. This was also the case for the other two oil types. On the other hand, no 
considerable difference was noticed between the evaluation of transmittance and absorbance spectra 
(see Fig. 2). 

 

Another point mentioned in section 3.1 is the choice between analyzing the full spectrum against 
analyzing only the fingerprint region. Fig. 2 shows that, the classification accuracy (two-class 
classification task) obtained using the full spectral region was better in the most cases. The same 
behavior was presented for the classification in three-, four- and five-classes too. 
Considering the previous results, the following tests were performed using the linear and the 3rd order 
polynomial kernel function with full transmittance spectra. To test the influence of the number of spectra in 
the training list, the classification is now performed using up to 500 spectra per class. In Tab. 3, the case 
of Oil-1 with up to 250 spectra per class can be seen. For a number of spectra higher than 100, the 
classification accuracy changed only marginally. Fig. 3 shows the exponentially growing computational 
time related to the increasing number of spectra for Oil-1 in a two-class classification problem. Oil-2 and 

 
Fig. 2 Classification accuracy for a two-class classification task using different kernel functions. The kernel 
functions are labelled with the numbers 1 to 6, which correspond to linear, 2nd order polynomial, 3rd order 

polynomial, 4th order polynomial, radial basis (RBF) and sigmoid function respectively. 

Tab. 2 Classification accuracy for classification in up to five classes using six different kernel functions. 50 full 
transmittance spectra of Oil-1 per class were used. A decrease in the accuracy related to an increase of 

classes can be observed. 
Oil-1 Transmittance Full Spectra 

 Classification Accuracy (%) 
Kernel 

Function Linear 2nd order 
polynomial 

4rd order 
polynomial 

4th order 
polynomial Radial Basis Sigmoid 

2 Classes 82.0 87.0 86.0 86.0 59.0 57.0 
3 Classes 84.0 75.3 76.0 76.0 14.0 35.3 
4 Classes 71.0 62.5 62.5 63.0 10.5 18.5 
5 Classes 56.0 48.8 54.0 50.8 14.4 15.2 
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Oil-3 presented a similar gradient in the computational time, also accompanied by an only marginal 
increase of the classification accuracy. In order to preserve both, classification rate and computational 

time, we decided to use 100 spectra per class for the next tests. Tab. 5 gives the corresponding 
classification results using 100 spectra per class for Oil-2 and Oil-3. 
Tests for the choice of the best scaling factor [12] were performed for scaling between -3 and 3, between 
-5 and 5 and between -10 and 10 using 100 spectra per class. These tests delivered only marginal 
changes in the accuracy. A change of the scaling margin causes a variation of the weighting of the 
different kind of features. In our tests, only features of the same type (spectral points) were used. Due to 
this, there is no significant change in the classification accuracy for data sets with different scaling margin. 
We decided to carry out our experiment with scaled datasets between the margins -1 and 1. 
An improvement of the classification accuracy can be achieved by optimizing the penalty parameter C of 
the linear polynomial function, which was set by default to 1 in the previous experiments [10]. Tab. 4 
shows the results for all oil types in the case of two and three classes, where an improvement up to 3% 
was achieved. 

 
No. of Spectra 

 

 
No. of Spectra 

 
Fig. 3 Relation between accuracy and computational time for a two-class classification task (Oil-1). The linear and 
the 3rd order polynomial kernel function were used. An exponential rise in the computational time with increasing 

number of spectra per class can be seen. 

Tab. 3 Classification accuracies for Oil-1 using up to 500 spectra per class. The spectra are classified in two to 
five classes using the linear and the 3rd order polynomial kernel function (poly3). 

Oil-1 
 Classification Accuracy (%) 

No. of Spectra 40 60 80 100 150 200 250 
2 Classes, linear 87.5 84.2 87.5 89.5 88.7 90.8 91.8 
3 Classes, linear 76.7 83.9 84.6 85.0 83.6 84.3 86.3 
4 Classes, linear 63.8 60.4 71.6 68.3 - - - 
5 Classes, linear 56.5 59.0 59.5 63.0 - - - 
2 Classes, poly3 80.0 84.2 81.3 85.5 86.0 87.0 87.4 
3 Classes, poly3 74.2 78.9 75.4 75.0 77.3 77.5 80.7 
4 Classes, poly3 61.9 51.7 64.4 63.8 - - - 
5 Classes, poly3 48.0 51.3 49.8 53.0 - - - 
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The approach robustness against noise (see section 3.3) was tested on the data sets without optimization 
of the penalty parameter (C=1). As it can be seen in Fig. 4, for Oil-1 the accuracy decreases 
exponentially with the noise level until a saturation level is reached. The approach based on the 3rd order 
polynomial kernel function shows a better robustness compared to that based on the linear kernel 

function. However, the last shows a better classification accuracy for low noise levels. For the case of the 
3rd order polynomial kernel function used in a two-class classification task, the performed classification is 
acceptable until a noise level of 3%. A similar characteristic is shown by the other two oil types too. All 
results for the two-class classification task can be seen in Tab. 6. 

  

 
 

Fig. 4 Classification accuracy for a two- and three-class classification task of noisy spectra using the linear and the 
3rd order polynomial kernel function. Different noise levels were added to the spectra before testing the model. The 

model based on the 3rd order polynomial kernel function presents a higher robustness against noise. 

Tab. 4 Optimization of the penalty parameter C for the SVM model based on the linear kernel function. 
 c Accuracy (%) Improvement (%) 

2 Classes 1.5 91.0 1.5 Oil-1 
3 Classes 0.5 87.0 2.0 
2 Classes 19.1 91.5 2.0 Oil-2 3 Classes 0.4 84.7 3.3 
2 Classes 1.2 88.0 1.0 Oil-3 3 Classes 0.14975 83.7 3.3 

 

Tab. 5 Classification accuracy for Oil-2 and Oil-3 using 100 spectra per class. The spectra are classified in two 
to five classes using the linear and the 3rd order polynomial kernel function (poly3). 

Oil-2 Oil-3  Classification Accuracy (%) 
No. of Spectra 100 100 

2 Classes, linear 89.5 87.0 
3 Classes, linear 81.3 80.3 
4 Classes, linear 75.8 73.8 
5 Classes, linear 72.3* 63.6 
2 Classes, poly3 81.5 86.0 
3 Classes, poly3 81.3 77.3 
4 Classes, poly3 72.8 67.3 
5 Classes, poly3 64.4* 60.0 

*The 5th class contains 94 spectra instead of 100. 
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5. Conclusions 
In this work, the use of SVMs as classifier for oil spectra according to the range of their TAN value was 
tested. The spectra of three typical commercially available gear oils were subdivided into maximal five 
classes according to their TAN value and classified using different kernel functions and SVM parameters. 
Classification results using transmittance and absorbance spectra were compared. No relevant 
differences in the classification accuracy could be noticed. The use of the complete spectrum as feature 
for the classificatory was also compared with the use of the fingerprint region, where the first one gave 
the best results. Different kernel functions were tested, where the linear and 3rd order polynomial 
functions gave the best results. 
Increasing the number of considering spectra per classes during the training, a slight improvement of the 
classification rate could be observed. However, together with the number of spectra, the computational 
time increases exponentially, which requires a compromise solution. 
An optimization of the penalty parameter delivers an improvement in the results. In this work only the 
optimization for the linear kernel function was performed. Extending this optimization also to other kernel 
functions could result in a stronger impact in the classification accuracy, due to the fact that more 
parameters are involved. 
The linear kernel function showed the best classification accuracies, however, the 3rd order polynomial 
function turned out to be the most robust against noise influence. 
Concluding, this work showed that SVM is a promising tool for classifying oils spectra according to the 
range of their TAN values. This could be used to set alarms on an in-situ monitoring system, which 
indicates if a gear-oil is inside acceptable values or not. This work used the complete oil’s spectra as 
feature for the classification without preprocessing; in a future work the potency of other features 
extracted from the spectra will be studied. 
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