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Nano scale oxide p-n junctions  
The p-n junctions in Si and compound 

semiconductors have been widely used to 
fabricate various applications such as 
transistors, solar cells and light emitting diodes. 
The regions near the p-n junctions are quite 
different to those far from the junction in the 
viewpoint of charge carrier concentration and 
the potential barrier. This can be used to design 
oxide semiconductor gas sensors.  

There have been many researches on the 
n-type oxide semiconductor gas sensors such 
as SnO2, In2O3, ZnO, TiO2, and WO3. The 
representative p-type oxide semiconductors for 
gas sensor applications are CuO, NiO, Cr2O3, 
and Co3O4. The electron depletion layer and 
hole depletion layer will be formed near the 
junction of the n- and p-type semiconductors, 
respectivley. The donor density is one of key 
parameters to determine the gas response in 
oxide semiconductor sensors. The charge 
carrier depletion near the junction can also 
change the gas responses of n-type and p-type 
oxide semiconductor sensors.  In addition, most 
of p-type semiconductors can play the roles of 
catalysts to promote gas sensing reactions. 
Thus, the formation of oxide p-n junction can be 
used to enhance the gas selectivity and gas 
response.  

The n-type ZnO nanowires (thickness: 30 -
70 nm) decorated with the discrete 
configuratoins of p-type Co3O4 nano-islands 
have been prepared by the vapor phase route 
and their gas sensing characteristics were 
investigated [3]. Pristine ZnO nanowires were 
also prepared for comparison. Both of ZnO and 
Co3O4-decorated ZnO nanowires showd the n-
type gas sensing behaviors, that is, the 
resistance increase by oxidizing gas and 
resistance decrease by reducing gases. This 
means that the conduction across the Co3O4-
decorated ZnO nanowires is governed not by p-
type Co3O4 nanoclusters with discrete 
configuration but by n-type ZnO NWs with 
connecting configuration. Thus, the Rg/Ra and 
Ra/Rg values were used for gas responses to 
NO2 and C2H5OH, respectively. At the sensor 
temperature of 200 °C, the response (Rg/Ra) to 
5 ppm NO2 was as high as 46.48 while cross 
responses (Ra/Rg) to 100 ppm C2H5OH, CO, H2, 
and C3H8 were negligible (Table 1a). This 
indicates that NO2 can be measured in a 
selective manner using pristine ZnO nanowires. 
However, at 400 °C, the responses to 5 ppm 
NO2 and 100 ppm C2H5OH become similar, 
which make the discrimination between NO2 
and C2H5OH difficult.  In contrast, Co3O4-
decorated ZnO nanowires showed the selective 
detection of NO2 at 200 °C and selective 

detection of C2H5OH at 400 °C. The deposition 
of discrete p-type Co3O4 nanoislands on n-type 
ZnO nanowires will enlarge the electron 
depletion layer in a radial direction of ZnO 
nanowires, which will increase sensor 
resistance. This is supported by the fact that the 
resistances in air (Ra) of Co3O4-decorated ZnO 
nanowires sensors were 8 – 60.1 times higher 
than those of ZnO nanowires sensors at 200 – 
400 °C. The increase of Ra will decrease the 
response to NO2 (Rg/Ra) and increase the 
response to C2H5OH (Ra/Rg). This says that the 
formation of oxide p-n junciton can be used to 
tune the responses to reducing and oxidizing 
gases. In addition, the catalytic effect of Co3O4 
nano-island to promote the gas sensing 
reaction toward C2H5OH should be also taken 
into account.  
Table 1: Gas responses of (a) prisinte ZnO 
nanowires and (b) Co3O4-decorated ZnO nanowires 
to 100 ppm C2H5OH and 5 ppm NO2; (c) the 
resistances in air of two sensors 

(a) ZnO nanowires 

T(oC) response to  
5 ppm NO2 

(Rg/Ra) 

response to 
100 ppm C2H5OH 

(Ra/Rg) 

200 46.48 1.0 

400 3.45 4.28 
(b) Co3O4-decorated ZnO nanowires 

T(oC) response to  
5 ppm NO2 

(Rg/Ra) 

response to 
100 ppm C2H5OH 

(Ra/Rg) 

200 14.32 1.0 

400 1.36 21.94 
(c) the resistance in air (Ra) of two sensors 

T(oC) Ra(ZnO)(MΩ) Ra(Co3O4-ZnO) (MΩ) 

200 0.75 6.00 

400 0.31 18.8 

 

Humidity dependence of gas sensors  
The resistances, gas responses, 

responding and recovering speeds of oxide 
semiconductor gas sensors are known to 
depend significantly on the humidity because 
not only the analyte gas but also water vapor 
interact with oxide semiconductor surfaces. The 
loading of NiO on hierarchical SnO2 
nanostructures is promising approach to reduce 
the humidity dependence of gas sensing 
characteristics to a negligible level [4].  
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SnO2 hierarchical structures assembled 
from nanosheets were prepared hydrothermal 
reaction and then 1.27 wt% of NiO was loaded. 
In dry atmospheres, the undoped SnO2 
hierarchical structures showed high and rapid 
response to 50 ppm CO (dotted line, Fig. 4a). 
Under the atmosphere of RH 25%, most of gas 
sensing characteristics such as gas response, 
responding speed and resistance in air were 
significantly deteriorated or changed (solid line, 
Fig. 4a). The loading of 1.27 wt% NiO 
enhanced the recovery speed in dry 
atmosphere (dotted line in Fig. 4b). And the 
NiO-loaded SnO2 sensor showed the negligible 
dependence of gas senisng characteristics on 
humidity (solid line in Fig. 4b). According to 
diffuse reflectance infrared transform 
measurement, it is found that the 
electrochemical interaction between humidity 
and SnO2 sensor surface is very small because 
most of water-related species are abosorbed 
not on SnO2 but on discrete configuration of 
NiO. 

 
Fig. 4 Sensing transients of (a) SnO2 hierarchical 
nanostructures and (b) 1.27 wt% NiO-loaded SnO2 
hierarchical nanostructures to 50 ppm CO at 400 °C 
under dry and humid (RH 25%) atmospheres. 
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