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Abstract: 
We developed a 32×32 array chip of extended-gate FET-based redox potential sensor with 11-
ferrocenyl-1-undecanethiol (11-FUT) modified gold electrode. The sensor array detected the redox 
reaction of hexacyanoferrate (II) and hexacyanoferrate (III) as a change in the electric potential of the 
11-FUT modified electrode in accordance with the Nernstian response at a slope of 57.9 mV/decade 
at 25 °C with a dynamic range of more than five orders of magnitude. The stability of the potential was 
within 0.5 mV/h. Of all 32×32 sensor cells, each potential of 80% and each difference of 92% were 
within ± 5 mV and ± 1 mV from median, respectively. The 2-dimensional and real time visualization 
were enabled by imaging of sensor array. Using an enzyme-catalyzed redox reaction, this FET-based 
sensor array successfully detected a glucose level from 25 to 200 mg/dL.  

Key words:Extended-gate FET sensor array, Redox potential sensor, Glucose sensor, Ferrocenyl-
alkanethiol, Nernst equation, Chemical reaction imaging 

Introduction 
Field-effect transistor (FET)-based biosensors 
are energetically studied because of their 
attractive features such as small size, low cost, 
and the possibility of on-chip integration of 
multimodal biosensors. Recent studies showed 
that extended-gate FET sensor could detect 
charges of biomolecules [1][2]. However, these 
FET sensors that directly detect biomolecular 
charges are strongly affected by the buffer 
conditions such as pH and salt concentration, 
which cause decrease in detection efficiency or 
unstableness of electric potential of the 
electrode when the salt concentration becomes 
low in order to avoid screening by ions. Instead 
of direct charge detection method, redox 
reaction detection method was developed using 
an extended-gate FET with 11-FUT modified 
gold electrode [3]. This redox potential sensor 
detects the ratio of oxidizer to reducer 
concentration, and is not affected by the 
absolute concentrations and pH, thus the 
sensor can detect biomolecules with high 
stability and high accuracy. In this paper, we 
report a chip which integrates 32x32 redox 
potential sensors and the controlling circuit. 

Fabrication of FET-based sensor array chip 
The structure of on-chip 32×32 extended-gate 
FET sensor array with 11-FUT modified gold 
electrodes is shown in Fig. 1. The FET-based 
sensor array chip was fabricated in a standard 
1.2μm2-metal and 2-poly CMOS process(ON 
Semiconductor).Layers of 20nm Ti and 100nm 
Au were deposited on the extended-gate 
electrodes, and patterned by optical lithography 
and wet etching.SU-8 layer is adopted on the 
chip to protect from the solution, resulting in a 
20μm×56 μm opening of electrode. CMOS 
source-drain follower circuit was used to output 
the potential of the extended-gate electrode 
[4].Therefore, the electrode potential can be 
measured in real time.  
The alkanethiol-modification procedure of the 
gold electrodes of extended-gate FET sensor 
array was as follows. The chip was kept in an 
alkanethiol solution for 24 h. The concentration 
of ferrocenyl-alkanethiol solution (11-FUT) was 
500μMin ethanol. After alkanethiol modification, 
the chip was rinsed with ethanol and deionized 
water twice to remove unreacted alkanethiol 
molecules. The chip was kept in a 0.1-M 
sodium sulfate solution at room temperature 
until use. 
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This redox potential sensor array was applied to 
the detection of glucose. The following enzyme 
reaction system for glucose was used, 
 
 
 
 
 
 
where ATP is adenosine triphosphate, ADP is 
adenosine diphosphate, NAD is the 
nicotinamide adenine dinucleotide, NADH is a 
reduced form of NAD, G-6-P is glucose-6-
phosphate, and G-6-PDH is glucose-6-
phosphate dehydrogenase. The enzyme 
reaction system converts 1 mol of glucose to 2 
mol of hexacyanoferrate (II), which can be 
detected by the 11-FUT modified FET sensor 
as mentioned above. Enzyme-mixed solution 
(Redox-PBS mixed with Hexokinase, G-6-PDH, 
Diaphorase, MgCl2, NAD, and ATP) and 

glucose solutions (PBS mixed with glucose , the 
glucose concentration were 25, 50, 100, and 
200 mg/dL) were mixed with at a ratio of 
10:1.The measurement of the potential change 
of the11-FUT modified FET sensor array was 
performed in the same way as in the 
measurement of the mixed solution of 
hexacyanoferrate (II) and hexacyanoferrate (III). 
Fig. 7 (a) shows the time-course change in the 
potential measured for stepwise changes in a 
glucose level. When the sample of each 
concentration was supplied, the potential was 
changed to expected direction. Furthermore, no 
potential change was observed when solution 
without enzyme was supplied. These results 
show that the potential is changed according to 
the change of ratio of hexacyanoferrate (III) to 
(II) concentration caused by enzyme reaction. 
Fig. 7 (b) shows the relationship between the 
given and detected glucose concentrations, 
which shows a fairly good linearity (r2=0.99991).

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) Time-course change of potential (median) measured for stepwise changes in glucose concentration, 
(b) detected glucose concentration versus given glucose concentration 	
 

Conclusion  
A 32×32 array of extended-gate FET-based 
redox potential sensors with ferrocenyl-
alkanethiol modified gold electrodes was 
developed and showed very stable detection of 
glucose. In the future, the 11-FUT modified 
FET-based sensor array will be applied to other 
targets, such as DNA sequencing. 
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