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Abstract: 
In the last decade, Single-walled Carbon Nanotubes (SWNTs) have emerged as potential functional 
materials in next-generation chemical sensors due to their exceptional electronic and chemical 
properties. In this review, we summarize the progress that has been made in the last few years in the 
field of carbon nanotube chemical sensors. When a single SWNT is integrated as the channel in a 
carbon nanotube field-effect transistor (CNFET), ultra-low power operation down to 0.01 μW and a 
detection limit of 50 ppb (parts per billion) NO2 at room temperature has been achieved. Hysteresis 
suppression through pulsed gate sweep strategies and sensor recovery by heating and UV-exposure 
has been demonstrated. In case of functionalized CNT-network sensors, detection limits as low as 
100 ppt (parts per trillion) has been achieved. 

Key words: Carbon nanotubes, chemical sensors, low power, hysteresis, sensitivity, chem-FET 

Introduction 
Ever since J. Kong et al. [1] demonstrated the 
chemical detection of NO2 and NH3 with CNFETs, 
SWNT-based gas sensors have been studied 
extensively. For a SWNT, all the atoms 
contributing to electronic transport are at the 
surface, and available for interaction with the 
environment. The carbon atoms in a CNT are 
linked by strong sp2 bonds, making them 
chemically inert. However, non-covalent 
interactions at the surface are possible, and the 
sensitivity of SWNTs to different chemical 
species, including NO2, O2, NH3, polymers and 
biomolecules has been shown [2]. 

Depending on the number of CNTs present as 
sensing material in the channel, the devices are 
classified as mat-sensors or individual SWNT 
sensors. In mat-sensors, multiple CNTs are 
assembled between electrodes. This increases 
the area available for interaction with the analyte, 
but it also increases the power consumption. Due 
to the presence of intersections and crossings 
between CNTs in the channel, the transduction 
mechanism in these devices is also complex to 
model. Besides low power consumption, 
Individual SWNT sensors are expected to be 
easier to model and to provide a platform for 
understanding the transduction mechanisms and 
device physics in CNT-based sensors. 

Despite their high potential and promise, the initial 
demonstrations of SWNT-based sensors also 

exhibited several issues which hindered their 
application in practical situations, such as 
controlled integration of CNTs into microstructures 
[3], gate hysteresis [4], sensing at the metal-CNT 
contacts [5] and high 1/ƒ noise [6]. Recently, 
novel measurement techniques and improve-
ments in sensor design and fabrication have led to 
devices with improved performance with respect 
to sensitivity, detection limit and long-term 
stability. 

Recent progress in SWNT-based chemical 
sensors 

Hysteresis 
The first report on CNT sensors [1] showed 
sensitivity of the electrical characteristics of a 
single SWNT connected between two Ni/Au 
electrodes to NO2 and NH3. They found that upon 
exposure to the analyte, there was a shift of the 
threshold voltage in the transfer characteristics of 
the FET (Fig. 1). In this paper, no gate hysteresis 
is reported since the gate voltage was swept only 
in one direction. 

Helbling et al. in 2008 [7] studied the NO2 sensing 
behavior of suspended CNFETs. Their 
measurements indicate a large gate hysteresis in 
the transfer characteristics of chem-FET 
measurements. On devices with an open channel, 
it has been shown that water molecules 
surrounding the CNT have a large influence on 
gate hysteresis [8,9]. However, in passivated 
CNFETs the gate hysteresis has been attributed 
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