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Abstract: 

To improve the performance of INS, the Competence Center for Applied Sensor Systems 
(CCASS) has successfully designed a low-cost INS with 6 accelerometers and 6 gyroscopes. 
The accuracy of this object-tracking system has been dramatically improved by Shaping-filter 
and Sensor-error model. According to the application of this navigation system, a pattern 
recognition algorithm will be developed to improve the stability and accuracy of the INS. This 
recognition algorithm is based on the Bayesian decision method, because it is a parametric 
technique with benefits of simplicity.   

Our developing application has finite start and stop points. In other words, the pattern of the 
movement might possibly be recognized with pattern recognition algorithms. Then, the position 
will be estimated based on the result of the developing pattern recognition module and the 
navigation module compensated with the error module. Moreover, this pattern recognition 
module might be successfully integrated with the error module, which is based on Kalman-
filtering. It might possible to use the result from the pattern recognition as a reference signal, as 
well as the reset point of the INS system. 
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1. Introduction  

In recent years, quality control is one of the major focuses in automotive industries. Most 
processes in automotive manufacturing have been carefully observed and tested to ensure the 
quality of the end products. However, many automotive parts still have been assembled without 
any quality control process. For instance, all bolts of automotive parts should be fastened in the 
right position, and also in the right order. This manufacturing process remarkably depends on 
operators. Therefore, some mistakes might occur by human error, such as missing bolts or 
fastening a bolt in a wrong position. To prevent these problems and improve the quality of 
automotive assembly, the system which is able to track the location of the tool-tip location, while 
fastening the bolts, is required. 

To develop a tool-tip tracking system using a low-cost inertial measurement unit (IMU), the bolt-
identification algorithm has been constructed for supporting the project "INSCHRAV". This 
identification algorithm is integrated in an intelligent screwdriver to use it in an automotive 
production line, such as engine assembly and air-bag assembly. With WIFI communication, the 
information from the intelligent screwdriver will be continuously sent to the monitoring system for 
checking the position and the order of fastened bolts. 

A low-cost IMU is micro-electromechanical systems (MEMS) composed with three 
accelerometers and three gyroscopes that measure the linear acceleration and angular velocity 
in 3-axis of the body-frame [1]. Theoretically, the attitude of an object attached with an IMU is 
able to be numerically estimated by integration of angular velocity signals, and the position of 
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the object is estimated by double integration of acceleration signals. However, the major 
problem of a low-cost IMU is stochastic sensor drift. The error from attitude and position 
estimation using IMU increases over time dramatically, because of the accumulated error from 
the integration [2]. 

To eliminate the effect of sensor drift from attitude estimation, Kalman filter (KF) and variants of 
Kalman filter is well-known technique to find the optimal attitude from the signals of a low-cost 
IMU. Foxlin applied extended Kalman Filter (EKF) based on the separated bias Kalman filter 
method from Friedland in [3], [4]. However, the yaw estimation of this method is depended on 
the signals from magnetometers as many studies in [5] - [9]. For automotive assembly line, 
there are many metallic objects that distort the magnetic field. Therefore, using magnetometers 
for attitude estimation might lead to the inaccuracy of the system. Another problem of EKF, it is 
well-known that the behavior of EKF is unpredictable, even though, it often can be used 
successfully [11]. 

 

Instead of EKF, other studies, such as in [12], successfully developed attitude estimation 
algorithms based on unscented Kalman Filter (UKF). Although the mathematic model of UKF is 
simpler than EKF, because of it is not necessary to calculate Jacobian matrices [13], the 
computation time of UKF is greater than EKF, and it is not suitable for real-time applications. 
Interestingly, Rehbinder and Hu successfully developed the attitude estimation based on 
switching Kalman Filter [11]. Importantly, the mathematic model of their work is simply and 
based on complementary Kalman filter and the switching algorithm in [14]. There is the 
switching algorithm for selecting between static mode and dynamic mode. This technique is 
really practical for eliminating the effect of lateral acceleration while the object is moving. 
However, the output of this attitude estimation is just only the optimal roll and pitch angles. 

 

Without global positioning systems (GPS), there is a few of successful algorithms to estimate 
the position of an object using IMU. In [18], the authors developed the error model to generate 
the optimal error from the result of their experiments. Similarly, Hegrenses et al. generated the 
error module based on KF to compensate the error from position estimation using IMU [19] 
(Hegrenses et al., 2007). With signals from redundant accelerometers and gyroscopes, Haid 
successfully applied error module based on KF for one-dimensional position estimation in (Haid, 
2004). Interestingly, these techniques are practical when the dynamic model is lack in 
observation or using IMU without other reference sensors.  

Won et al. applied a position sensor to improve the performance of position estimation based on 
KF in [20]. With help of Fuzzy logic algorithms, the position of a fastening tool is successfully 
tracked with their system. However, using a position sensor is inconvenient in the automotive 
production line, because the workspace of this system is limit by the wire length of the position 
sensor.   

Unlike other studies, Vissiere et al. developed a KF technique using the magnetic disturbance in 
observation model to compensate the error of the velocity estimation [21]. Importantly, the 
performance of this method is depended on the model of magnetic field disturbances. Based on 
Maxwell's equation, the mathematic model of this technique is remarkably complicated and 
difficult to implement in real applications. 

 

This paper presents a position estimation based on complementary Kalman filter (CKF) and 
shaping filter for indoor applications which the movement of the tracking object is definite in 
patterns. Note that lower-case bold letters, Greek or Roman, denote vectors, and upper-case 
bold letters denote matrices. 

2. Overview of tool-tip tracking algorithms 

There are four main algorithm modules as shown in Figure 1, the initialize module, the attitude 
estimation module, the position estimation module and the bolt-identification module. In brief, 
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the initialize module determines the initial position of the IMU, , and the initial orientation 
of the intelligent screwdriver by using the IMU and ultrasound sensors. From the initial 

position to the first bolt-position, the information of the optimal attitude  is estimated by the 
attitude estimation module. Then, the position estimation module determines the optimal 
position of the tool-tip . Finally, the bolt-identification module estimates the recognized 
position  of the fastened bolt. s 

 
Figure 1: Overview of tool-tip tracking algorithms 

There are two major components in the position estimation module, as shown in Figure 2. One 
of the main components is the navigation algorithm which estimates the position of an object by 
using the accelerometer signals and an optimal attitude  from the attitude estimation module. 
Another main component is the error model based on complementary Kalman filter (CKF). To 
estimate the position of an object, the measurement signals from IMU (the acceleration and 
angular velocity signals) are pre-processed. After that, the navigation algorithm determines the 
predicted position . Simultaneously, the error model as shown in Section 3, estimates the 
optimal position error . The optimal position  is determined by compensating the predicted 
position with the optimal position error. Finally, the optimal tool-tip position  is computed by 
the optimal attitude and the optimal position. 

 
Figure 2: position estimation module 

3. Complementary Kalman filter  

In brief, Kalman filter is a recursive algorithm  based on a stochastic model for estimating the 
optimal state, in sense of least square error under circumstances,  at time  by the the previous 
state (at time ). A dynamic system can be modeled by a n-by-1 state vector  obeying a 
discrete-time evolution equation as in Eq (1), where  is an -by-  state transition matrix,  
is an -by-  matrix and  is a -by-1 vector of system inputs, and  is an -by-1 process 
noise vector with covariance . 
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 (1)  

 

To observe a system, the measurement vector  is the indirect measurements of the state 
vector which is available at each time . This measurement vector is defined as an -by-1 as 
in Eq (2), where  is an -by-  system observation matrix, and  is an -by-1 
measurement noise vector with covariance . 

 (2)  

 

One form of the discrete-time Kalman filter, shown in Eq (3), is applied for this attitude 
estimation,  

 

 (3)  

 

where the Kalman gain matrix  is determined from the estimation error covariance matrix  
as in Eq (4). 

 

 (4)  

 

In Eq (5), the estimation covariance matrix  is updated by the Ricatti equation: 

 

 (5)  

 

The predicted measurement vector, , is computed from the previous state as in Eq (6).  

 

 (6)  

Importantly, the term  in Eq (3) is the correction term of Kalman filter, which can be 
observed the behavior of the Kalman filter [16].  

 

While most of the authors above used a Kalman filter to directly estimate the position and it's 
derivatives, it is common in inertial navigation systems to instead use a complementary Kalman 
filter which operate only on the error in position estimation. This technique dramatically reduces 
the complexity of the model, and also improves the stability of the system when the KF model 
fails [15].  

 

As Figure 2, the acceleration vector  defined in Eq (8) , is measured by the accelerometers, 
where  is the acceleration in -axis of body-fixed frame. 

 

 
(7)  
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Then, the navigation algorithm estimates the predicted position  . To compute the optimal 
position, the error model is designed to estimate the optimal position error  and the optimal 
velocity error based on the complementary Kalman filter in [17]. In this paper, there are 6 
error states for the complementary Kalman filter as show in (8) , where  and  are the 
error of estimated position and the error of estimated velocity in -axis of initial frame in order. 

 

 
(8)  

 

4. Switching algorithm  

To avoid the inaccuracy of the recognized position  while the object moving, the switching 
algorithm will switch the mode of estimation. One of the estimation modes is halt-state which the 
tracked object is not moving, and another is moving-state that the object is moving. Based on 
the previous study, the movement of the object is effectively detected by the magnitude of the 
angular velocity signals,  . When this magnitude is equal or greater than the threshold  the 
moving-state mode will operate. Therefore, the switching factor  at time  is defined as in Eq 
(9). 

 

 
(9)  

 

According to the switching algorithm in [11], the equations Eq (3) and Eq (4) are modified as 
shown in Eq (10) and Eq (11) in order. 

 

 (10)  

  

 (11)  

 

Based on the error state in Eq (8), the error measurement vector is the vector that contains the 
measurement error. The measure position error  is defined as in Eq (12). While halt-
state mode, the measurement bias is the different between the current predicted position  and 
the current recognized position . 

 

 (12)  

 

5. Error model formulation 

From Eq (2), the system error dynamics can now be formed as in Eq (13), 

 

 
(13)  

 

 where the state transition  is determined by the propagation model in [17]. 
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(14)  

 

In Eq (14),  is a 3-by-3 identical matrix,  is a 3-by-3 zero matric and  is time step size. The 
time constant  is used for parameter optimization. The system error-measurement dynamics 
can also be formed from (2) as in Eq (15), where the observation matrix  is defined as in Eq 
(16). 

 

 
 

(15)  

 

(16)  

 

As the result from above, the modified state prediction equation in Eq (10) will be: 

 

 (17)  

 

 

 

6. Experiment 

In this Section, the position estimation module is tested with the measurement signal form IMU 
attached on a stick as Figure 3 . Before this experiment, the parameters of the error model in 
the attitude estimation module and the position estimation module are already optimized by 
simulation with white noise. 

 

 
Figure 3:  a stick attached with IMU 

To test the performance of the position estimation module, the stick is attached with a low-cost 
IMU. The measurement data from the IMU are acquired by the Labview application which is 
developed in Competence Center for Applied Sensor Systems (ccass). Moreover, this Labview 
application determined the arrived target position based on the algorithm of the position- 
identification module.  

 

In this experiment, the measurement data are acquired from an IMU100, which is successfully 
developed by ccass, which is attached on the intelligent screwdriver. The IMU100 is 9-DOF 
initial measurement unit integrated with 3-axis magnetometer, a digital thermometer and a 
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digital pressure sensor. The 3-axis magnetometer in IMU 100 is LSM303DLH from ST, which 
give noise 218 ) and its sensitivity is ± 20 mg. The gyroscopes of this IMU are 
LPR430AL and LY330ALH from ST. The rate noise density of LY330ALH is less than 
LY330ALH (0.014  )   and 0.018 ) in order). The reference tracking system 
is the AS200 infrared tracking system from Lukotronic. And the reference position is measured 
from the infrared markers.  

 

The experiment was done by moving the stick from initial position (B00) to a target position as in 
Figure 4 (5 times per target position, and 8 target positions). In detail, the pitch between each 
target position is 10 cm. After processing the measurement data, the estimated positions were 
compared with the measured position from the infrared tracking system.    

 

 
Figure 4: target positions 

7. Results 

The errors of the tool-tip tracking algorithms are analyzed by the target bolt position and the 
estimated position in each axis. As Figure , the maximum average error of position estimation 
was 188 mm in x-axis of the target position B02. The reason that the error of this position is 
relatively larger than other target positions is the position error of this position is greater than the 
limit of the position-identification module (within 100 mm diameter). Therefore, the position-
identification module predicted a false position and over compensated the optimal position in 
the position estimation module. In summary, the performance of this attitude estimation 
algorithm is satisfied. The overall average position errors from the experiments are 69, 41 and 
42 mm. in x-, y- and z-axis in order.  
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Figure 5: average error of position estimation    

 

8. Conclusion and outlook 

This paper described a position estimation based on complementary Kalman filter (CKF).  This 
algorithm is part of the project "INSCHRAV" that its target is to develop a tracking system to 
track an intelligent screwdriver in automotive production line, by using low-cost IMU. With the 
simplified error model, which is described in this paper, the optimal attitude is able to be 
successfully computed as the result from the experiment.   

 

To improve the performance of the tool-tip tracking algorithms, the error model based on CKF 
for attitude estimation and position estimation would be optimized. Moreover, this position 
estimation with help of pattern recognition algorithms is able to be implemented in other indoor 
navigations, such as a computer interface devices and video game controllers.  
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