
Network Synthesis and Hybrid Modeling of Miniature 
Electroacoustic Sensors 

Daniel M. Warren, David E. Schafer, 
Knowles Electronics, 1151 Maplewood Drive, Itasca, Illinois, USA, 

daniel.warren@knowles.com 

Abstract: 
Networks of linear, lumped parameter components are quick and efficient tools to simulate miniature 
microphones used in hearing aids. Synthesizing a network simulating first-order effects in a 
microphone is straightforward, but when subtle mechanisms such as thermal conduction at cavity 
walls are introduced, more advanced techniques are called for. In the first part of this paper, a 
potentially novel method of synthesizing a network from known solutions of the diffusion equation is 
introduced. In the second part, another technique is discussed in which specific physical mechanisms 
are not directly considered, but a model is sought which only captures the observed behavior of a 
microphone. Finally, the opposite end of the modeling detail spectrum is examined, and a hybrid 
modeling method combining detailed multiphysics finite element analysis of critical components with 
lumped parameter modeling of surrounding structures to leverage the best of both modeling 
techniques. 
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Network Synthesis from First Principles 
The basic technique of developing transducer 
networks from first principles is well known [1] 
and will not be repeated here. Straightforward 
application of these techniques may result in 
unsatisfactory agreement between the model 
and measured data. For example, the 
sensitivity of a hearing aid microphone in which 
the front and back cavities (Fig. 1) are modeled 
as simple capacitors (with compliance 

  C0 =V / γ p0 , where  V  is the volume of the 

cavity, γ  is the ratio of specific heats, and   p0  
is the ambient pressure) does not match 
measured data at low frequencies (Fig. 2). 

 
Fig 1. Cross-section view of a miniature microphone 
used in hearing aids. 

 

 
Fig. 2. Measured and predicted sensitivity of a 
hearing aid microphone. Measured sensitivity 
(orange), predicted sensitivity ignoring thermal loss 
(light blue), predicted sensitivity including thermal 
loss (dark blue). 

The reason for this discrepancy is thermal 
conduction at the cavity walls. The walls impose 
an isothermal condition on an otherwise 
adiabatic pressure field. This effect is only 
evident for small cavities, as found in hearing 
aid microphones. Daniels [2] solves the 
diffusion equation with isothermal boundaries to 
derive the acoustical impedance of a small 
enclosure, which is recast here as 

  
Z = 1

Z0

+ 1
ZT

⎛

⎝⎜
⎞

⎠⎟

−1

,   

where 

  
Z0 =

1
jωC0

, ZT = 1
jωC0 γ −1( )Y ,   
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and  Y  is a function that depends upon the 
geometry of the cavity. For a narrow 
rectangular box, 

  
Y = tanhβa

βa
, β = jω

Cpρ
k

,   

where  a  is half the narrow dimension of the 
cavity and the gas constants for air 

 
Cp  is 

specific heat capacity at constant pressure, ρ  
is density, and  k  is thermal conductivity. 

The fact that the acoustical impedance is 
written in terms of a transcendental function 
poses no difficulty to most calculation software. 
Even in Spice, a LAPLACE current-controlled 
voltage source could be created to simulate the 
impedance  ZT . However,  ZT  has a real part, 
which implies that it will be a source of thermal 
noise. It is mandatory that the network model 
correctly represent both the sensitivity and the 
self-noise of the microphone, and Spice is only 
able to calculate thermal noise from explicit 
resistors in a network. 

The network synthesis method proposed here 
is to expand the solution of the diffusion 
equation as a continued fraction and derive a 
ladder network with that impedance [3]. The 
hyperbolic tangent can be expressed as a 
continued fraction [4] 

   

tanhz = z

1+ z2

3 + z2

5 + z2

7 +

  

which, after some work, yields  

   

ZT = 1
jωCT

+ 1
3

RT

+ 1
5

jωCT

+ 1
7

RT

+

  

where 

  
CT = γ −1( )C0, RT =

a2Cpρ
k γ −1( )C0

.   

This impedance is recognizable as the 
impedance of a ladder network [5]. Truncating 
the ladder after 5 rungs reproduces the data 
much more accurately than simple compliances 
(Fig. 2). This same technique can be carried out 
for solutions of the diffusion equation in other 
geometries.  

 
Fig. 3. Network for the compliance of a narrow 
rectangular cavity, synthesized from the solution of 
the diffusion equation. 

System Identification 
A very different approach to modeling 
microphones is not concerned with physical 
mechanisms, but only focuses on observed 
behavior. This is a method popular among 
control theorists, who are only interested in the 
behavior of a device expressed in a form that 
obviates important features such as stability, 
group delay, and controllability. The technique 
of system identification seeks to develop 
network functions characterizing the device 
from measured response data. 

Functions that define the input and output 
characteristics of a network will be generally 
referred to as network functions   H(s) , where 

 s = jω  is the complex frequency in continuous 
time. Network functions are ratios of output to 
input measured across exposed ports of the 
network. Network functions can be expressed 
as ratios of polynomials 

   

H(s) = p(s)
q(s)

=
ak

k=0

n

∑ sn−k

b
=0

m

∑ sm−

, bm = 1,                      (1) 

with real coefficients  ak  and   b  [5]. The 

coefficient   bm = 1 avoids ambiguity among the 
magnitudes of the coefficients. In a black box 
approach, no knowledge of the device is 
assumed a priori. One would choose arbitrary 
orders  n  and  m  and allow a least-squares 
curve fitting routine search for the coefficients. 
The resulting functions can be faithful 
representations of the data, but the function 
tends to be unstable outside the range of the 
data, and the properties of the function may not 
mirror the properties of the microphone [6]. 

An alternative formulation is found by factoring 
the polynomials 

C0

CT CT 5 CT 9
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H(s) = g
(s − zk )

k=1

n

∏

(s − p)
=1

m

∏

= g
(s − zkr )… (s − z ′k r )

2 + z ′k i
2( )…

(p − zr )… (p − z ′ r )
2 + p ′ i

2( )….

              (2)

 

The roots  zk  of   p(s) = 0  are the zeros of the 

function and the roots   p  of   q(s) = 0  are the 
poles. Since the coefficients in Eq. (1) are real, 
the zeros must either be real valued 

 
zk = zkr  or 

occur in conjugate pairs
 
z ′k = z ′k r ± jz ′k i , as do 

the poles. The product of the conjugate pair 
factors are written in the form 

  
(s − z ′k r )

2 + z ′k i
2( ) , 

which is a convenient form for calculation as it 
eliminates small spurious imaginary factors 
resulting from the numerical product of

  (s − zk )(s − zk
* ) . 

In general, network functions are complex in 
value, and it is best to work with complex data 
when available. In the absence of complex 
data, fitting the function 

  
20log10 H(g,z1,z2,…,p1,p2,…;s)  

to the data expressed in decibels is another 
option. This has the advantage of being 
capable of recovering the phase of the data 
values, assuming the system is minimum phase 
[7]. 

A practical consideration when fitting curves is 
scaling. If the free parameters in a curve fit 
have widely disparate orders of magnitude, 
than the gradient matrix is ill-conditioned and 
the smaller parameters may get lost in the 
round-off. At the very least, the smaller 
parameters are not determined to the same 
precision as the larger parameters, if they are 
found at all. 

First, we scale the frequency. Choose the 
maximum frequency of interest  fmax . It is 
advisable that this frequency be greater than 
the highest frequency in the data. In fact, if the 
eventual goal is to create a discrete-time filter to 
represent the data, the Nyquist Theorem 
requires that   fmax  be at least twice the highest 
frequency in the data. Next, choose a value 

  vmid  somewhere in the middle of the range. 
Normalize each data set as 

  
{{Ωi ,vi },…} =

π fi
fmax

,
vi

vmid

⎧
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,…

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  

where  0 ≤ Ω ≤ π  is the normalized circular 
frequency. 

Although the network function is complex 
valued, it is required that the free parameters 
and the independent variable of the network 
function are real. Complex parameters are 
broken into their real and imaginary parts as 
two separate parameters as in Eq. (2). Eq. (2) 
is a function of complex frequency s , so for the 
curve fit we set s = jΩ , and fit the function to the 
normalized data. Finally, we express the fit 
function in the original scale by mapping Ω  
back to the complex frequency  s  and 
multiplying by the magnitude of the original data 
set 

  
vmid H( jΩ) : jΩ→ s

2fmax

.  

In order to have control over the fitting process, 
a software tool was developed in Mathematica, 
shown in Fig. (4). The tool allows the user to 
interactively place poles and zeros in the third 
quadrant of the  s -plane. Poles or zeros placed 
on the origin are locked to the origin, and those 
placed on the negative real axis are locked to, 
but free to vary along, the real axis. Poles and 
zeros placed elsewhere represent complex 
conjugate pairs and are free to vary within the 
constrained plane 

  {s :ℜ(s) < 0∧ 0 < ℑ(s) ≤ π }.   

The tool dynamically creates a function of the 
form Eq. (2) and displays its Bode plot with the 
normalized data. Once the user is satisfied that 
the function has the right structure and 
reasonable initial conditions, he can push a 
button and the curve fit routine finishes the job. 
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Fig. 4. A screen from the system identification tool, 
shown fitting the transfer function of a microphone 
sensitivity (right) to a pole/zero model (left). Only 
magnitude data was available, and the phase Bode 
plot shows the reconstructed phase. 

This tool automatically constrains the function 
to be stable and minimum-phase, which are 
expected properties of a transducer network. 
Constraints chosen by the user are adhered to 
during the curve fit. The tool is designed to 
allow the user to apply prior knowledge of the 
problem domain to system identification. 

The network functions derived using this tool 
are more likely to have the same properties as 
the device than a black box system 
identification because the user is able to input 
expected behavior into the fitting process. 
However, the data the modeler has to work with 
is necessarily band-limited, and out-of-band 
features, which are only partially captured in the 
data, are, to a certain extent, ambiguous. For 
example, it is already known that the correct 
model for the microphone response in Fig. 4 
should have first-order high-pass, two second-
order low-pass, and a first-order low-pass 
characteristics. Since the first-order low-pass is 
close to the high frequency limit of the data, and 
one second-order low-pass peaks is beyond it, 
the curve fit cannot resolve these features 
correctly, finding a third second-order low-pass 
peak instead. 

At this level, then, system identification can only 
be considered a model of the data, not a model 
of the system. For this reason, the author has 
not seriously pursued the possibility of using 
Foster or Cauer synthesis to develop a network 
solely from network functions determined this 
way. The resulting network would not 
necessarily represent the mechanisms in the 
microphone, and having a network that just 
represents the data is not a significant 
improvement over having a continuous-time 

function that does the same thing. It seems 
more fruitful to derive the network functions 
from a network constructed by conventional 
means, then fit those functions to measured 
data.  

Hybrid Modeling 
Now we move to a modeling style where we 
need more detail, not less. Lumped parameter 
modeling is simple, fast, and convenient 
because it glosses over the details. Many 
parameters in lumped models are “effective” 
values, meaning they are somewhat modified 
from the value one would predict from first 
principles based on a simpler geometry which is 
more amenable to analysis than the actual 
shape of the part. 

At the other end of the spectrum is Finite 
Element Analysis (FEA), which, despite 
impressive development in software, remains 
anything but simple, fast, and convenient. It is, 
however, the best means of analyzing complex 
geometries and integrating conflicting 
requirements among several physical domains. 
Also, FEA encourages beginning users to 
simulate a single system geometry to derive a 
single result, which provides no insight into the 
nature of the system. In other words, it is easy 
to get an answer from FEA, but to get 
enlightenment requires additional effort. 

Understanding a system using FEA requires 
multiple simulations of similar systems, 
perturbed from the original in controlled ways. 
This is difficult to do when a single FEA solution 
of an entire multiphysics system in three 
dimensions can take hours to run and take 
more memory than available in a practical 
computing system. So, how do we leverage the 
power of FEA within the time constraints of a 
product development cycle?  

The approach we chose to take (described in 
more detail in [8]) was to segment the 
microphone into easy and hard parts. Much of a 
miniature microphone can already be simulated 
using lumped parameter models as previously 
discussed. Aspects of the design which we do 
not intend to modify, such as the back volume, 
front volume, and geometry of the port and 
outlet tube, can be calculated in isolation in 
one-time FEA simulations and captured in a 
lumped parameter circuit (Fig. 5). 
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Fig. 5. Lumped parameter network showing the 
simpler and immutable components in the design 
optimization. 

Our task was to optimize the design of the 
working part of the microphone, the motor 
(Fig. 6), so it is modeled in exacting detail in 
FEA. The motor consists of a tensioned 
diaphragm closely spaced to a metal backplate 
coated with an electret material maintaining a 
permanent electric field within the narrow gap. 

 
Fig. 6. Cross-section of a microphone motor. 

 

Our primary figure of merit is the signal to noise 
ratio (SNR) of the microphone. The signal is the 
sensitivity of the microphone to an acoustic 
pressure, which relates primarily to the surface 
voltage on the electret, the gap spacing, and 
the tension of the diaphragm, but is peripherally 
(negatively) effected by parallel capacitive 
paths from the high-potential backplate to 
ground through nearby conductive surfaces (the 
amplifier circuit, diaphragm tension ring, and 
the metallic can encasing the microphone). The 
noise contribution from the motor is all about air 
motion. As noted previously, any dissipative 
mechanisms in the system exhibit as noise. The 
narrow gap between the diaphragm and 
backplate is a squeezed film of air and can be 
very resistive to air flow. Small holes and 
peripheral notches are provided in the 
backplate to relieve dynamic pressure 
developed due to motion of the diaphragm, but 
the noise of the is highly dependent upon the 
distance the air has to travel to get through the 
reliefs. On the converse, any metal we remove 
from the backplate cannot develop electrical 
signal to sense the diaphragm motion, lowering 
sensitivity. 

Optimizing the motor design requires the 
careful simultaneous optimization of 
electrostatic, electrodynamic, mechanical, and 
boundary layer acoustical factors. An FEA 
simulation was set up to include the motor and 
conductive surface representing the cup and 
circuit conductors (Fig. 7). Critical parameters, 
including dimensions controlling the shape of 
the backplate perimeter and a central hole, the 
gap spacing, the equivalent voltage on the 
electret, and diaphragm tension are variables in 
the optimization problem. The remainder of the 
system, such as acoustic volumes and acoustic 
porting, which are considered constants in the 
problems, are embodied as a circuit (Fig. 5), to 
which the FEA results are coupled. 

 
Fig. 7. Diagram of interacting fields and quantities in 
within a microphone. 

Several pieces of software have to work 
together. A master program was developed in 
Mathematica. The master program contains a 
list of the current and previous parameter 
values. The geometry and boundary conditions 
for the FEA are developed by the master 
program and checked for consistency, then 
written to a COMSOL control file. COMSOL 
runs, writing the results to an output file. The 
master program reads the output file and 
reduces the results to admittance relations 
among the front and rear acoustic pressure and 
volume velocity, and voltage and current from 
the backplate. Finally, the network is evaluated 
for sensitivity and noise. 

This work started in an older version of 
COMSOL, when it was called FEMLAB.  In a 
future project we will convert the software to a 
recent version of COMSOL, and see if the 
Acoustics, AC/DC, and Optimization modules 
can solve this problem entirely within COMSOL. 

The process is repeated, modifying the critical 
parameters to follow the steepest descent 
contour, until the sensitivity to noise ratio is 
maximized. Tab. 1 illustrates the results of one 
optimization, yielding a 2 dB improvement in 
signal to noise (on an A-weighted scale.) The 
specific dimensions are not shown as they 
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relate to an unreleased product and are 
considered proprietary. 

Tab. 1. Tabulated results from an optimization of a 
microphone motor, showing changes in parameter 
values relative to starting values, and resulting 
improvement in signal to noise ratio. 

Parameter Change After 
206 Cases 

Air Gap -21% 

Diaphragm Tension +12% 

Electret Bias Voltage +30% 

Dimension “A” +65% 

Dimension “B” -38% 

Dimension “C” -84% 

Dimension “D” +32% 

Dimension “E” +65% 

Input-Referred Noise  -1.93 dBA 

Conclusions 
Three methods for modeling microphones at 
varying levels of detail and utility have been 
presented, through mathematical analysis of 
governing equations, numerical analysis of 
measured data, or mixed finite element and 
lumped parameter analysis. Each method has 
applicability depending upon the level of 
accuracy required in the solution or the level of 
system knowledge the modeler has access to. 
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