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Abstract: 
This paper presents the simulation and optimization of the magnet system of an electromagnetic flow 
meter. The boundary element method (BEM) is used to solve the corresponding 3D magnetostatic 
Maxwell equations. A Fredholm integral equation of the second kind for the “microscopic” current on 
the surface of the paramagnetic pole shoes of the magnet system is derived. Discretizing the integral 
equation leads to a much smaller linear system as an adequate finite element formulation of the 
problem. For selected examples we show how the dramatically reduced computing time and effort for 
mesh preparation facilitates a fast and cost-efficient optimization of the magnet system of the 
electromagnetic flow meter. 
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Magnetostatic Simulations Using Boundary 
Elements 
Recent years have seen a real increase in the 
use of numerical simulation in the design phase 
of the development of flow sensors. Thereby 
the finite element method (FEM) has 
established itself as analytical workhorse for 
structural mechanics, fluid dynamics and 
electrodynamics. 

However, using FEM for magnetostatic 
simulations one encounters the problem that 
the magnetic fields are to be determined, in 
principle, at infinity. Therefore the simulation 
domain has to be truncated and assumptions 
on the symmetries of the fields at that boundary 
are to be made. This truncation of the domain 
and the meshing of the (hopefully) large enough 
domain is the most labour-intensive part in 
using FEM for magnetostatics. To circumvent 
this difficulty of domain based methods as FEM 
or FDM (finite difference method) we apply the 
boundary element method [1] to optimize the 
magnet system of an electromagnetic flow 
meter. 

Exploiting the fact that the underlying equations 
describing the magnet system of the flow meter 
are assumed to be linear we derive in the 
following sections an integral equation for a 
“microscopic” or “virtual” surface current 
density. From this “microscopic” current 
density j

�
on the surface of the paramagnetic 

materials of the magnet system the magnetic 

flux density within the flow tube of the magnetic 
flow meter can be calculated. 

In this paper we restrict our investigations to a 
simple magnet system (see Fig. 1) with just one 
current carrying coil and one paramagnetic pole 
shoe to guide the magnetic field. However, our 
approach can easily be extended to more 
realistic situations with more then one source of 
the magnetizing field )(rH

�
, i.e. more coils, and 

different and complicated shaped magnetizable 
materials. 

Fig. 1. Considered magnet system with current 
carrying coil (blue) and paramagnetic pole shoe 
(green). The flow is aligned in the y-direction and the 
flow tube (not shown) is positioned between the two
arms of the pole shoe.  
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Basic Equations 
The basic equations describing the magnetic 
induction )(rB ��

 and the magnetizing field 

)(rH
�

 generated by macroscopic current J
�

trough the coil and guided by the paramagnetic 
pole shoe with relative permeability rμ are  

0=⋅∇ B
�

 (1) 

and 

JH
��

=×∇  (2) 

together with the material equation 
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The assumption which facilitates our approach 
using the boundary element method is that the 
relative permeability rμ is constant within the 

pole shoe. In particular rμ  is assumed to be 

independent of the magnetizing field )(rH ��
. 

The permeability everywhere outside the pole 
shoe is considered to be equal to one. 
Therewith we can conclude from equation (2) 
that the magnetic flux density is irrotational 
outside the current carrying coil except for the 
surface of the paramagnetic pole shoe. This 
motivates the following Biot-Savart law like 
ansatz for the magnetic flux density: 
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From this equation we will be able to calculate 
the magnetic flux density at any desired 
position after the initially unknown “microscopic” 
current density )(rj ��

 is determined. Therefore 
we have to exploit that the tangential 
component of the magnetizing field )(rH ��

 is 
continuous at the surface of the pole shoe 
which results in the following discontinuity for 
magnetic flux density: 
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whereby n�  denotes the normal vector pointing 
outside the volume of the pole shoe. Knowing 
that the surface current density )(rj ��

 results in 
a certain jump of the magnetic flux density 
which is given by 
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we can derive a second relation between the 
magnetic flux density and the “microscopic” 
surface current density: 
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Inserting equation (4) into equation (7) finally 
yields the desired equation for the unknown 
surface current  
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Numerical solution 
The above equation for the surface current 
density )(rj ��

 can easily be classified as a 
Fredholm integral equation of the second kind. 
Hence, after discretizing it, we compute its 
solution by using the method of successive 
substitutions [2]. 
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Thereby we circumvent the use of a direct 
solver to solve the resulting linear system which 
is unfortunately not sparse. 

Example I: Permeability of the Pole Shoe 
As first example we have investigated how the 
permeability of the pole shoe influences the 
magnetic field within the flow tube. To get a 
sufficient spatial resolution we had to mesh the 
surface of the pole shoe with just 552 boundary 
elements resulting in only 1104 degrees of 
freedom. Exemplary, for a typical relative 
permeability of rμ =1000, the solution for the 
magnetic flux density within the flow tube and 
the meshing of the pole shoe is shown in Fig. 2. 
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 Fig. 2. Magnetic flux density within the circular flow tube aligned in the y-direction. The color indicates the 
magnitude of the B-Field (violet = 0mT, red =24mT). The surface of the pole shoe was meshed with just 552 

boundary elements. The simulation was done with just 1104 degrees of freedom. 

To evaluate how good the magnet system guides the magnetic field we have computed the z-
component of the flux density over the cross section of the flow tube (at the electrode positions). 

Fig. 3. Z-component of the flux density over the 
cross section of the flow tube (violet = 0mT, red 
=24mT). The electrodes are positioned at the left and 
right side of the cross section at z=0.   
Upper picture rμ =10. Lower picture rμ =100. 

Fig. 4. Z-component of the flux density over the 
cross section of the flow tube (violet = 0mT, red 
=24mT). The electrodes are positioned at the left and 
right side of the cross section at z=0.   
Upper picture rμ =1000. Lower picture rμ =10000. 
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From Figs. 3 and 4 one can see that the 
magnetic field in the tube becomes stronger, 
and almost homogenous, at least in the region 
between both electrodes if the permeability of 
the pole shoe increases from 10 to 10000. 

To be able to judge if its worth to choose a 
material for the pole shoes with higher 
permeability we have computed the z-

component of the magnetic field averaged over 
the cross section as function of the permeability 
(see Fig. 5). The resulting average can be used 
to estimate the sensitivity of the meter to flow, 
i.e. the measured voltage between the 
electrodes for a given flow-rate. The averaged 
flux density increases significantly only up to a 
relative permeability of 1000. 

Fig. 5. Z-component of the magnetic flux density averaged over the cross section. The averaged flux density 
increases significantly only up to a relative permeability of 1000. 
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Example II: Tilting the Coil 
As second example we have investigated how 
a tilting of the current carrying coil with respect 
to the flow tube and the pole shoe influences 
the magnetic field within the flow tube. This 
modification of the geometry does not require a 
new meshing. This is in contrast to the finite 
element method (FEM) and an essential 
advantage of the boundary element method 
(BEM). 

Exemplary, for the relative permeability of 

rμ =1000 and a tilt angle of 5° the solution for 
the magnetic flux density within the flow tube is 

shown in Fig. 6. For this permeability the tilting 
of the coil has a negligible effect on the 
magnetic field within the flow tube. 

For a tilt angle of 5° a noticeable effect can be 
observed only for an untypical small 
permeability of the pole shoe of rμ =10 as 
shown in Fig. 7. 

Fig. 6. Magnetic flux density within the circular flow tube aligned in the y-direction for a slightly tilted coil (5°). 
The relative permeability of the pole shoe was 1000. The color indicates the magnitude of the B-Field (violet = 

0mT, red =24mT). 

Fig. 7 Magnetic flux density within the flow tube for a slightly tilted coil (5°). The relative permea bility of the pole 
shoe was only 10.The color indicates the magnitude of the B-Field (violet = 0mT, red =1.1mT). 

. 
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Summary and Conclusion 
We have shown on two examples how the 
magnetic field generated by a magnetic system 
of an electromagnetic flow meter can be 
computed using the boundary element method 
(BEM) The BEM has two essential advantages: 

Only the surfaces of the magnetizable parts of 
the magnet system must be meshed. This leads 
to a much reduced meshing effort. If just 
positions and no shapes of the parts of the 
magnet system are changed even no new 
meshing is required. 

The primary quantity, which is solved for, is the 
“microscopic” surface current density which is 
unknown only on the surface of the 
magnetizable parts. This leads to a dramatically 
reduced number of degrees of freedom. Even 
simulations with 1000 degrees of freedom yield 
solutions for the magnetic field within the flow 
tube of the flow meter with sufficient accuracy 
and smoothness, i.e. differentiability, for 
optimization. For all shown examples, using just 
a common desktop computer, it took less then 2 
minutes to compute the magnetic field within 
the flow tube. Hence for more realistic, i.e. more 
complicated magnet systems, with about 5000 
degrees of freedom we expect the simulation 
time to be considerably smaller then one hour. 

So the boundary element method (BEM) 
facilitates a fast and cost-efficient optimization 
of the magnet system of electromagnetic flow 
meters. 
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