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Abstract 
This paper deals with the representation of the human user of a haptic system in the design process 
and investigates different fitting algorithms to find network representations and transfer functions. The 
user, represented by the mechanical impedance, serves as mechanical load to the system and 
influences the assessment of the quality of the haptic feedback. Due to large inter-personal variances, 
the mapping from measurements to concentrated network parameters is investigated in this paper. 

Three different fitting approaches are used and compared based on the model error. The results show 
lowest errors for fitting algorithms that incorporate both amplitude and phase information of the 
measurements despite a linearity assumption of the basic network model. Suggestions for the 
mapping of the transfer functions to parameter values of the network model are given. 
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1. Motivation 
Haptic systems address the human sense of 
touch to convey information, either additional to 
visual and auditory information already present 
or as a new form of interaction. One of the 
major application areas in research and 
industry is adding touch information to medical 
and surgical systems to increase task 
performance and patient’s security. Such 
procedures like heart catheterization [1] and 
laparoscopic interventions [2] exhibit quite 
special interaction schemes. Therefore more 
and more task-specific haptic systems are 
designed to add touch information and force 
feedback. 

Such systems convey forces and vibrations in 
several degrees of freedom. For this purpose, 
manifold actuator principles and kinematic 
structures are used [3,4] for operating devices 
and manipulator systems. Depending on the 
kinematic mechanisms used and the selected 
actuator principles, operating point dependent 
and multi-dimensional transfer functions arise 
already for a single element of a haptic system. 

Model-based evaluation of system designs 
regarding the control stability and the quality of 
the delivered haptic feedback is necessary for 
the optimization of both criteria. Modeling 
techniques used for this purpose therefore have 

to be able to reproduce the above mentioned 
properties of systems, while allowing 
computationally efficient calculations. For the 
electromechanical systems, network theory 
based on lumped or distributed parameters 
seems to be an attractive modeling option [5]. It 
has been shown, that network-based models 
can be used to model and optimize haptic 
operating devices [3,6], as well as the 
mechanical properties of interaction 
environments.  

Since a haptic system will interact with a human 
user, this paper addresses the representation of 
the user in system design models. In the next 
sections, the general design process of haptic 
systems is briefly outlined and two modeling 
options are discussed. Section 3 focuses on the 
importance of the user and its influence on 
stability and haptic quality. Section 4 then 
presents measuring and modeling techniques 
for user impedances.  

2. Design of Haptic Systems 
Haptic (teleoperation-)systems consist out of 
three principal system components:  

� Haptic operating device: Delivers haptic 
feedback to the user and records control 
signals for the manipulator. 
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� Manipulator system: Interacts with the 
environment and records reaction forces 
that are presented as haptic feedback to 
the user. Typical manipulator systems 
include universal industrial robots or virtual 
environments that are for example used for 
surgical training purposes. 

� System controller: To ensure stability 
regardless of operating points, system 
latency and user reactions, the system 
controller is a crucial part of a haptic 
system. Besides stability, the quality of 
haptic feedback can be influenced by the 
system controller.  

In general, a haptic operating device consists 
out of several actuators (at least one for each 
actuated degree of freedom), a kinematic 
mechanism and several sensors to record the 
user input. For a high quality feedback, 
additional sensors are used to close a control 
loop for the force or position output of the 
device. If a real manipulator system is used 
instead a virtual environment, this system 
exhibits a similar structure with actuators, 
kinematic mechanisms, sensors and internal 
control loops. To make up a complete haptic 
system, the system controller closes two 
additional control loops for control signals from 
the haptic operating device to the manipulator 
and for measured signals from the manipulator 
to the haptic operating device.  

To model such systems, two different 
approaches are commonly used. The first 
approach uses transfer functions linking 
different input xin(s) and output xout(s) signals of 
an arbitrary system component by a frequency 
dependent complex function according to eq. 1. 

�(�) =  ����(�)
�	
(�)    (1) 

The physical representation of the signals xin 
and xout depend on the component described by 
the transfer function G. If G describes a 
common DC motor, xin could describe the 
voltage applied to the motor and xout would 
describe the rotational speed. Another transfer 
function would link coil current i with torque M. 
Transfer functions can be linked and the overall 
transfer function can be calculated by 
multiplying the linked transfer functions 

The second approach is the use of 
concentrated network parameters and two-port-
representations of the systems components. 
The network uses two independent coordinates, 
that model the flux between two connected 
nodes in the network (flux coordinate f) and the 
potential difference between two arbitrary 
nodes (not necessarily directly connected, 

differential coordinate d). Coordinates are 
chosen depending on the represented domain, 
i.e. electrical, mechanical or thermal systems. 
In general, the product of flux and differential 
coordinates resembles power. For electrical 
systems, voltage u is chosen as differential 
coordinate, current i serves as the flux 
coordinate. System components are modeled 
with networks of of basic lumped elements like 
resistors, capacitors and inductors (electrical 
domain) or masses, viscous dampers and 
springs (translational mechanical system). 

Compared to the description of transfer 
functions, each system component is 
represented by two input and two output 
signals, In this case, the above mentioned 
motor is described by a complex matrix H 
linking mechanical and electrical properties as 
given in eq. 2. 

 ��(�)(�)� = �ℎ11 ℎ12ℎ21 ℎ22� ��(�)�(�) � (2) 
Obviously, eq. (2) incorporates eq. (1), but 
extends the motor model in such a way, that 
arbitrary electrical and mechanical boundary 
conditions can be considered. Despite specific 
two-port-models like eq. 2, general transducers 
are known to link different domains in a network 
representation of a system.  

Comparing both modeling options, the network 
representation proves to be more illustrative, 
since each network component has a physical 
representation. Since the connection between 
different system components includes 
differential and flux components (and therefore 
also models energy flux), components are 
independently interchangeable without a re-
calculation of transfer functions. Calculation of 
system models based on network parameters 
are fast and efficient, since proven calculation 
tools like SPICE can be used. On the contrary, 
network models are restricted to  systems with 
a linear behavior. This is normally accounted for 
by calculating a working point and considering 
only small changes.  

3. Considering the user 
Regarding the design of haptic systems, the 
user plays two important roles. First, the user is 
the standard for the quality of haptic feedback. 
Recent studies of the authors show, that haptic 
transparency is closely connected to the 
mechanical impedance of the user zuser in the 
given contact situation. Second, the user 
comprises a mechanical load to the operating 
device. According to [7], the user can be 
represented as a combination of an active 
source of forces F or velocities v and a passive 
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mechanical load, i.e. the mechanical 
impedance z as given in eq. 3. 

�(�) =  �(�)
�(�)   (3) 

The knowledge of the mechanical user 
impedance is therefore an important 
prerequisite in the design of haptic interfaces. 
To describe this mechanical impedance, [8] 
proposes a second order spring-mass-damper 
model. This simple model is effective in 
calculating forces for certain contact situations, 
but cannot incorporate more complex 
dependencies encountered in the design 
process. Based on [9,10], one of the authors 
therefore proposes a more complex model 
based on network parameters. This model is 
capable to incorporate external parameter like 
contact force, age and temperature [11] by 
selectively altering elements of the network 
model [4]. The network representation is given 
in fig. 1.  

 
Fig. 1:  Network representation of the mechanical 

impedance zuser using masses (m), springs 
(n) and dampers (r). 

In the model, r3 and n3 describe the mechanical 
properties of the skin in direct contact with the 
haptic system, while n1, r1 and m2 describe the 
properties of the directly attached limb, for 
example the finger. With n2, r2 and m1, 
properties of farther body parts like joints and 
limbs are described. While the model is able to 
incorporate external parameter, nonlinear 
behavior like relaxation cannot be described 
thoroughly by this model. This is tolerable in 
respect to the above outlined design of haptic 
systems, since the general network 
representation cannot describe such 
components as well. Because of the all-spring-
connection, the model is not defined for 
frequencies ω � 0; this has to be taken into 
account when selecting fitting. 

Measurements show a large inter-personal 
variance of the mechanical impedance for 
different users. Therefore, robust and accurate 
fitting methods for measurement data in the 
above described mode are needed. In the 
following, the used measurement method for 
the mechanical impedance zuser is described 

and several fitting algorithms to obtain network 
parameters in fig. 1 are evaluated. 

4. Measuring and Modeling Mechanical 
Impedances 

4.1 Measurement Setup and Results 
The measurement setup used consists of a 
force source (Brüel & Kjear 4810) that provides 
a sinusoidal force with a peak value of 10 N in a 
frequency range of DC to 18 kHz. For 
measuring the mechanical Impedance an 
impedance sensor (Brüel & Kjaer model 8001, 
operating frequency up to 10 kHz) with 
integrated piezoelectric force and acceleration 
sensor is used. The speed response v, 
necessary to compute the mechanical 
impedance, defined in eq. (3), is obtained by 
integrating the measured acceleration signal. 
To provide the force signal and to compute the 
mechanical impedance a network analyzer 
(model Agilent 35670A, fsample= 51,2 kHz for 
each channel) is used. 

During the measurement the sinusoidal force is 
exposed to the fingertip under test. To couple 
the force to the finger, a round concave plate 
with a diameter of 19 mm, well adapted to the 
finger to create a large contact area, is used as 
interface. The measurement setup is shown in 
fig. 2. 

 
Fig. 2:  Measurement Setup. The contactor used is 

made from aluminum with a diameter of 
19 mm and a concave cut out with a radius 
of 31 mm along the finger axis. 

Each measurement is done in a frequency 
range of 5 Hz to 5000 Hz with 401 
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logarithmically distributed sample points. To 
reduce measurement uncertainties the 
measured value of each sample is taken as the 
mean of 5 periods, after waiting 5 periods to 
create a steady state. Furthermore the average 
of three measurements of each person under 
test was used for further calculations and fits.  

To produce comparable results the test persons 
were asked to provide a constant offset force to 
the measurement setup with a value of 1 N. 
The offset force was measured and fed back 
with an oscilloscope where, in addition to the 
current offset force, a tolerance band of ± 10 % 
was displayed. The produced offset force of 
each subject was in the tolerance band.  

To eliminate the characteristics of the 
measurement setup a calibration measurement 
is done without any load on the finger interface 
and afterwards subtracted from the measured 
impedance values. The results of the 
measurements are given in fig. 3.  

While the general shape of the curves is similar 
with decay up to a frequency of 100 Hz, 
resonance effects between 200 Hz and 1 kHz 
and an ascending slope above that, a large 
interpersonal variance can be seen. Reasons 
could be different skin conditions (moisture, 
calloused skin) and erroneous user behavior 
during the measurement process. When each 
measured frequency point is analyzed 
separately, over 75 % of the impedance values 

are normal distributed (Χ²-Test, α = 0,05, 
amplitude and phase analyzed separately), 
therefore a central value and dispersion 
parameter for the network elements given in 
fig. 1 should describe the users impedance 
sufficiently. 

4.2 Modeling Methods 
Based on the linearity assumption of the model 
in fig. 1, all data sets were fitted to the transfer 
function given in eq. (4) using MATLAB with a 
Levenberg-Marquardt-algorithm. Absolute 
amplitudes and phases were fitted separately 
and mean and median of each network element 
were computed. A model transfer function zmodel 
was calculated with these values and the 
average quadratic error for the amplitude 
according to eq. (5)  

∆�,�(�) = �
� ∑ ��|�!"#$%(�)&−&�'(�)&*+�-.�'-�    (5) 

was calculated for each frequency as a 
measure of the fit quality. A similar defined error 
Δm,P was calculated for the phase information. 
As a reference, the mean and the median of the 
measured impedances were considered.  

The analysis of this error is given in fig. 4 as 
average of the errors Δm,A and Δm,P and the 
corresponding standard deviation. It is obvious 
that the assumption of linearity does not hold, 
since models based on amplitude fits exhibit 

 
Fig. 3 Measurements of the mechanical impedance zuser of n = 71 test persons. 

 �/�$0(�) = 3 ��4
�05�46� + �8�5!5�96��9096�

��9 + � �
�!9 + ��5

��5056��8��8�:
8�

     (4) 
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large phase errors and vice versa. In general, 
all fits were worse than the reference 
implementations of mean and median. This 
leads to the conclusion, that the model given in 
fig: 1 and eq. (2) is not sufficient in representing 
the real features and has to be further 
extended. 

Two approaches are evaluated to find a 
suitable expression for the network parameters 
of the model in fig. 1 with a low error. The first 
approach is the use of standard system 
identification tools (SIT) that estimate poles and 
zeros of the measurements and minimize errors 
by non-linear least-square searches (MATLAB 
function tfest with standard parameters and 
eq. (4) as a model). Eq. (2) is used as a 
functional basis for this algorithm. The second 
approach is the vector fitting method [12-14]. 
This method estimates the poles of the transfer 
function with an intermediate model and 
calculates the real poles of the unknown 
transfer function by optimizing this intermediate 
model. This method was investigated based on 
the mean (VFMean) and the median 
(VFMedian) of the measurement data. 

As shown in fig. 4, both models yield errors in 
the range of the errors of the lookup table 
implementation. Fig. 5 shows a bode plot of the 
acquired models over the complete data set, 
appendix A gives the calculated transfer 
functions. 

 
Fig. 5:  Bode plot of the acquired models. 

For a meaningful interpretation, the calculated 
transfer functions should be mapped onto the 
parameter of eq. (4). This is not possible 
because of an underdetermined system in the 
case of the system identification toolbox. For 
the vector fitting method, the resulting term 
includes a constant term in the denominator 
that cannot be mapped to the terms in eq. (4). 
Both methods therefore yield a sufficient 
approximation of the measurement data, but fail 
in extracting meaningful parameter values for 
the network model.  

 
Fig. 4 Comparison of Δm,A and Δm,P. Shown is the average error for each tested person and the corresponding 

standard deviations over all considered frequencies. Mean and Median denote the statistical parameter 
used. First two data sets are based on models based on amplitude fitting, the second two data sets are 
based on fitting of the phase. LuT denotes Look-up-Table implementation, VF Vector Fitting, 
considering amplitude and phase values simultaneously. SIT denotes the usage of the system 
identification toolbox of MATLAB. 

- SIT    - VFMedian 
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5. Conclusion 
The use of a model function and system 
identification algorithms show the best results in 
terms of amplitude and phase errors. 
Commonly known algorithms allow for 
integration of restrictions and base functions. 
On several occasions, the results show a 
shortage of the basic network model for the 
investigated contact situation. Because of that, 
no final parameter set could be determined for 
the network model proposed. 

Further work should include more studies on 
the network topology of the two-port-network for 
mechanical user impedances. The advantages 
of network representations are manifold in the 
design of haptic systems and should justify 
additional effort in the determination of the 
models. With improved models, not only the 
mechanical impedance but also non-linear 
effects like relaxation could be accounted for. 
Basis for such advanced models could be 
distributed networks or combined models based 
on network parameter and finite element 
approaches [15]. 
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Appendix A: model functions 
zuser(s) based on SIT fitting 

�;<>?(�) =  @(�)
A(�) =  −52,64 �E − 6,44 ∙ 10E�H − 2,85 ∙ 10J�K − 7,24 ∙ 10���+ − 1,89 ∙ 10�K� − 7,27 ∙ 10�H

�E + 7,04 ∙ 10H�H +  5,97 ∙ 10N�K +  2,23 ∙ 10�P�+ + 7,54 ∙ 10���  

zuser(s) based on VFMedian fitting 

�;<>?(�) =  @(�)
A(�)

=  −97,72 �E − (1,21 ∙ 10Q − R1,24 ∙ 108�P)�H − (8,01 ∙ 10�P − R9,44 ∙ 108Q)�K − (3,91 ∙ 10�H − R0,14)�+ − (6,88 ∙ 10�Q + R684)� − (6,71 ∙ 10�N + R1,67 ∙ 10E)
�E + 1,14 ∙ 10E�H +  1,36 ∙ 10J�K +  8,37 ∙ 10�K�+ + 8,5 ∙ 10�E� + 8,51 ∙ 10�Q
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