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Abstract: The design of modern sensors and actuators, which are often Micro - Electro -
Mechanical - Systems (MEMS), strongly depends on the availability of appropriate computer
simulation tools, since the fabrication of each prototype is quite costly. We present an advanved
Finite Element (FE) scheme for the design of viscosity sensors, which takes the full coupling
between flow dynamics and structural mechanics into account.
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Introduction

The development of new sensors and actu-
ators is an emerging and highly active re-
search field. Applications are piezoelectric
stack actuators, silicon microphones, comb
drive acceleration sensors as well as gyro-
scopes, electrostatic and electromagnetic mo-
tors, electromagnetic micro-power generators
(energy harvesting), electromechanical as well
as optical switches, etc. to name a few
[2, 3]. The sensing and driving mechanism
of these smart transducers is mostly based on
the interaction between an electric, magnetic
or electromagnetic field with a mechanical
or a thermal field (electrostatic-mechanical,
piezoelectric, magneto-mechanical, electric-
thermal-mechanical coupling, etc.).

In most cases, the fabrication of proto-
types within the design process of sensors and
actuators is a lengthy and costly task. There-
fore, the need for computer modeling tools ca-
pable of precisely simulating the multi-field
interactions is increasing. In order to achieve
reliable virtual prototyping of sensors and ac-
tuators the following main challenges have to
be addressed: (1) Solving coupled field prob-
lems (multi-physics); (2) Precise constitutive
laws for smart materials including the mate-
rial parameter determination; (3) Efficient nu-
merical schemes for solving the coupled sys-

tem of partial differential equations (PDEs);
(4) Shape and topology optimization. The
accurate modeling of sensors and actuators is
very challenging in virtue of the mechanical-
electrical (magnetic) coupling effects and the
nonlinearities (e.g. geometric nonlinearity,
electrostatic / magnetic force). Effects such
as the non-ideal boundary conditions, fring-
ing fields, pre-deformation due to the ini-
tial stresses, non-homogeneous structures and
moving / deforming bodies up to contact fur-
ther complicate the modeling [2]. Therefore,
only advanced numerical FE schemes are ca-
pable to achieve realistic simulation, e.g., [4].
In this sense, the numerical simulation of
viscosity sensors is such an example, where
standard FE schemes will not work. There-
fore, this contribution concentrates on the
mathematical modeling, the FE formulation
and the numerical simulation of such devices.
Thereby, we model the fluid by linearized
Navier-Stokes equations and solve the result-
ing partial differential equations by Taylor-
Hood finite elements. The vibration of the
cantilever is computed by Lagrange finite ele-
ments.

Governing Equations

There has been a growing interest in on-line
detection of liquid viscosity since it is a crit-
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ical parameter sensitive to material property
changes caused by chemical reaction, solidi-
fication, gelation, and/or deposition of sub-
stances. Thereby, dynamically driven mi-
crocantilevers are excited into resonance in
the out-of-plane flexural mode. The exci-
tation mechanism reaches from piezoelectric
over electro-thermal to electromagnetic prin-
ciples (see, e.g., [6, 8]. Here, we just focus on
the precise modeling of the interaction of the
mechanical vibration (excited by any actuator
principle) with the ambient fluid. Therefore,
we have to model the mechanical and the flow
field as well as their interaction.

Flow Dynamics

The linearized form of the Navier-Stokes
equations can be used to model the fluid.
Thereby, the fluid can be considered incom-
pressible as the wavelength of the microcan-
tilever’s vibration strongly exceeds the width
of the microcantilever, which is the dominant
length scale in the flow [1]. The velocity gra-
dient of the fluid is related to the velocity gra-
dient of the vibrating microcantilever. Since
it is assumed that the microcantilever’s am-
plitude of vibration is far smaller than any
length scale in the microcantilever’s geome-
try, the velocity gradient of the beam and
fluid can be considered small, and we can ne-
glect the convective term in the Navier-Stokes
equations. Thus, the equation of motion for
the fluid is given by

ρf
∂v

∂t
+∇p− μΔv = 0, (1)

∇ · v = 0. (2)

In Eqs. (1) and (2) v denotes the fluid veloc-
ity, p the pressure, ρf the mean density of the
fluid and μ the dynamic viscosity of the fluid.

The first term on the left hand side of (1)
is the term related to the fluid’s inertial forces,
and the third term on the left hand side is
the term related to the fluid’s viscous forces.
The Reynolds number, in this form sometimes
called the nondimensional frequency, can then

be found by taking the ratio of these terms re-
sulting for the cantilever in [7]

Re =
ρfωb

2

4μ
. (3)

In (3) ω denotes the angular frequency and b
the width of the cantilever. Furthermore, the
properties of the medium of operation, along
with the excitation angular frequency ω, will
determine the skin depth of the liquid layer
surrounding the vibrating beam. The skin
depth or boundary layer thickness, denoted
by δ, is defined as the distance over which
the fluid velocity decays to 1/e of its maxi-
mum value. The larger the skin depth, the
larger the amount of fluid excited by the vi-
brating beam. Physically, the boundary layer
thickness can be thought of as the amount of
fluid trapped in the vortex created by the vi-
brating microcantilever. The boundary layer
thickness can be found as [5]

δ =

√
2μ

ρfω
. (4)

Structural Mechanics

To model the structural vibration of the can-
tilever a linear elasticity model is applied
given by Navier’s equation

ρs
∂2u

∂t2
−∇ · σs = fV (5)

with the Cauchy stress tensor σs, the dis-
placement u, any volume force fV, and the
solid density ρs. By introducing the tensor of
elasticity c and the tensor of linear strain S,
Hook’s law may be expressed by

σs = cS . (6)

Furthermore, the linear strain-displacement
reads as

S =
1

2

(∇u+ (∇u)t) = Bu (7)

with the differential operator B computed by

B =

⎛
⎜⎜⎝

∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎞
⎟⎟⎠

t

.
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Inserting equation (6) and (7) into (5) results
in the final partial differential equation (PDE)
for linear elasticity

ρs
∂2u

∂t2
− BtcBu = fV . (8)

Coupling

For a correct representation of the fluid-
structure interaction two conditions must be
fulfilled at the common interface Γfs between
fluid and solid. First, the fluid velocity and
structural velocity have to be identical given
by

v =
∂u

∂t
on Γfs . (9)

This implies that the fluid adheres to the
structure. For a fixed wall this corresponds
to a so called no slip conditions. The second
condition is the continuity of stress in normal
direction along the interface, meaning fluid
stress σf and solid stress σs have to coincide
which is enforced by

σs · n = σf · n on Γfs. (10)

The acting fluid forces can be split up into a
pressure and a surface viscous stress compo-
nent

ffs =

∫
Γfs

σf · n ds =

∫
Γfs

−pI · n ds

︸ ︷︷ ︸
pressure force

+

∫
Γfs

μ
(∇v + (∇v)t) · n ds

︸ ︷︷ ︸
viscous force

.(11)

FE Formulation

The first step within each FE formulation is to
derive the weak formulation. Therewith, we
multiply (1), (2) with appropriate test func-
tion (ψ, ϕ) and integrate over the whole com-

putational domain Ωf for the fluid∫
Ωf

ρfψ · ∂v
∂t
dx−

∫
Ωf

ψ · Btσf dx = 0, (12)

∫
Ωf

ϕ∇ · vdx = 0. (13)

In (12) we have used the fluid stress σf (see
(11)). In a next step, we perform an inte-
gration by parts for the second term in (12)
resulting in∫

Ωf

ψ · Btσf dx = −
∫
Ωf

(Bψ)t · σf dx

+

∫
Γfs

ψ · σtnfs ds+

∫
Γf

ψ · σtnf ds (14)

with Γfs the interface between the fluid and
the solid, Γf the outer boundary limiting the
computational domain Ωf , and nfs the normal
vector at the coupling interface pointing from
the flow region into the solid region. Sub-
stituting (14) into (12) results in the weak
formulation for the linearized Navier- Stokes
equations∫
Ωf

ρfψ · ∂v
∂t
dx+

∫
Ωf

(Bψ)t · σf dx (15)

−
∫
Γfs

ψ · σtnfs ds−
∫
Γf

ψ · σtnf ds = 0,

∫
Ωf

ϕ∇ · vdx = 0.(16)

Denoting with φ the test function for
the mechanical PDE, and performing similar
steps, we arrive at the weak formulation for
mechanics∫
Ωs

ρsφ · ∂
2u

∂t2
dx+

∫
Ωs

(Btφ
)t
cBu dx

+

∫
Γfs

φ · σt
snfs ds−

∫
Γs

φ · σt
sns ds

=

∫
Ωs

φ · fVdx (17)
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Now, we introduce a Lagrange multiplier
λ to guarantee the coupling condition accord-
ing to (10)

λ = −σs · nfs = −σf · nfs . (18)

Furthermore, the coupling condition (9) will
be fulfilled in our formulation in a weak sense,
thus by ∫

Γfs

(
v − ∂u

∂t

)
· μ ds = 0 . (19)

Finally, we can combine the above equations
to achieve at the overall formulation∫
Ωf

ρfψ · ∂v
∂t
dx

+

∫
Ωf

(Bψ)t · (−pI + μ
(∇v + (∇v)t)) dx

−
∫
Γfs

ψ · λ ds =
∫
Γf

ψ · σtnf ds (20)

∫
Ωf

ϕ∇ · vdx = 0 (21)

∫
Ωs

ρsφ · ∂
2u

∂t2
dx

+

∫
Ωs

(Btφ
)t
cBu dx+

∫
Γfs

φ · λ ds

−
∫
Γs

φ · σt
sns ds =

∫
Ωs

φ · fVdx (22)

∫
Γfs

(
v − ∂u

∂t

)
· μ ds = 0 .(23)

The space discretization is performed with
Lagrange FE basis functions. Thereby, we
have to use Taylor-Hood elements for the dis-
cretization of the flow velocity and pressure.
This means that we use second order basis
functions for the flow velocity v but first or-
der basis functions for the pressure. Further-
more, we choose second order basis functions
for the mechanical displacement u, and first
order basis functions for the Lagrange mul-
tiplier λ. In a last step, we do a Fourier

transform of the semi-discrete Galerkin for-
mulation, which results in a complex algebraic
system of equations.

Numerical Results

As a numerical example to demonstrate the
applicability of the developed coupled FE
scheme, we investigate a MEMS cantilever.
The setup is displayed in Fig. 1, which con-
sists of the cantilever and the ambient fluid.

Figure 1: Computational setup.

To correctly resolve the boundary layer,
we use a quite fine mesh around the cantilever
which we then coarse towards the boundary
Γf as shown in Fig. 2.

Figure 2: Computational mesh

In a first step, we use the properties of air
and perform a coupled simulation at the first
eigen-frequency of the cantilever, which is at
about 18 kHz. Figure 3 displays the imagi-
nary part of the flow velocity around the tip
of the cantilever, and Fig. 4 the generated
pressure distribution in the whole computa-
tional domain of the fluid.
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Figure 3: Imaginary part of flow velocity near
the tip of the cantilever (zoomed).

Figure 4: Resulting flow pressure, when the
cantilever operates at the first eigen-frequency

Finally, we perform a harmonic analysis
for a frequency range around the first eigen-
frequency and compare the tip displacement
once obtained just by a mechanical computa-
tion (no ambient fluid being taken into ac-
count) and once for the fully coupled one,
which takes the ambient air into account. It
should be noted that we use a Rayleigh damp-
ing model with a loss factor of 0.05 for the
cantilever.

Figure 5: Mechanical displacement of the can-
tilever around the first eigen-frequency.

Figure 5 clearly demonstrates the influ-
ence of the ambient air on the amplitude and
shift in the eigen-frequency.
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