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Abstract: 
This paper presents one-dimensional attitude estimation using a low-cost gyroscope with help of 
shaping filter for industry applications. This algorithm is a part of controller module, which will be 
implemented in an intelligent wrench for automotive manufacturing. The orientation is primary 
estimated by the signals of a low-cost pinpoint gyroscope. With help of an error model based on 
Shaping filter method, the optimal 1-D orientation of an object is determined by compensating the 
estimated orientation with the estimated error. As the results from experiments, the accuracy of this 
attitude estimation is less than 1 degree within 90 second. 
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Introduction 
Currently, most of processes in automotive 
manufacturing have been carefully controlled 
and tested to guarantee the quality of the final 
products. However, many parts of a vehicle still 
have been assembled without any quality 
control processes, or with poor control 
procedures. For example, a worker uses a 
wrench to fasten a bolt that holds a pulley on an 
engine. He should fasten the bolt with the right 
torque. At the same time, the bolt should be 
rotated within a control range. If the rotating 
angle of the bolt is out of the control range, it 
might be that a worker uses a wrong bolt or the 
bolt is not in the specification. To control this 
process and improve the quality of automotive 
assembly processes, it is necessary to develop 
an intelligent wrench which is able to measure 
applied torque and a rotating angle of a bolt. 

A low-cost pinpoint gyroscope, CRM100 is 
applied for one-dimensional orientation 
estimation of the intelligent wrench. Instead of 
detecting a rotating angle of a fastened bolt, the 
intelligent wrench detects its own orientation 
which is the same angle as the rotating angle of 
the bolt. However, the challenge of this 
orientation estimation with a low-cost gyroscope 
is sensor drift problem that generated the 
accumulated error over time [1]. Moreover, it is 
difficult to integrate compass sensors as 
observation sensors, because there are the 
distortion of magnetic field and magnetic 
interferences in automotive production line [2].   

Theoretically, the orientation of an object 
attached with a gyroscope, is able to be 
numerically estimated by integration of angular 
velocity signals. But, in practice, there is always 
stochastic sensor drift in the measurement 
signals from a low-cost gyroscope [3]. 
Therefore, the error in orientation estimation 
using low-cost gyroscopes increases over time 
dramatically, because of the accumulated error 
for the integration.  

To eliminate the effect of sensor drift from 
attitude estimation, Kalman filter (KF) and 
variants of Kalman filter is well-known 
technique to find the optimal attitude from the 
signals of a low-cost inertial measurement unit 
(IMU). Foxlin [4] applied extended Kalman Filter 
(EKF) based on the separated bias Kalman 
filter method from Friedland in [5]. However, the 
yaw estimation of this method is depended on 
the signals from magnetometers as many 
studies in [6], [7], [8], [9], [10] and [11]. For 
automotive assembly line, there are many 
metallic objects that distort the magnetic field. 
Therefore, using magnetometers for attitude 
estimation might lead to the inaccuracy of the 
system. Another problem of EKF, it is well-
known that the behavior of EKF is 
unpredictable, although it often can be used 
successfully [12]. 

Instead of EKF, other studies, such as in [13], 
successfully developed attitude estimation 
algorithms based on unscented Kalman Filter 
(UKF). Although the mathematic model of UKF 
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is simpler than EKF, because of it is not 
necessary to calculate Jacobian matrices [14]. 
The computation time of UKF is greater than 
EKF, and it is not suitable for real-time 
applications. Interestingly, Rehbinder and Hu 
successfully developed the attitude estimation 
based on switching Kalman Filter [12]. 
Importantly, the mathematic model of their work 
is simply and based on complementary Kalman 
filter and the switching algorithm in [15]. There 
is the switching algorithm for selecting between 
static mode and dynamic mode. This technique 
is really practical for eliminating the effect of 
lateral acceleration while the object is moving. 
However, the output of this attitude estimation 
is just only the optimal roll and pitch angles. 

This paper presents the one-dimensional 
orientation using low-cost gyroscope based on 
error model technique with help of shaping filter 
for estimation rotating angle in environment that 
is not able to use magnetometers. 

Algorithm Structure of Orientation 
Estimation 
There are 4 modules to estimate the orientation 
of the intelligent wrench, such as Pre-
processing module, Movement detection 
module, Orientation estimation module and 
Error model module. The overview structure of 
this orientation estimation is shown in Fig. 1. 

The Pre-processing module helps the system to 
reduce noise of the measurement signal, ωmea, 
from a CRM100 pin-point gyroscope from 
PinPoint, and decrease the number of data 
using for orientation estimation. This pre-
processing module contains algorithms that re-
sample the measurement signal from 1 kHz to 
50 Hz sampling frequency, and filter the signals 
with low-pass Butterworth filter.  

To observe the movement of the intelligent 
wrench, the Movement-detection module 
detects the change from static state to dynamic 
state of the tool. Because there is stochastic 
noise in the measurement signal, the error from 
orientation estimation is dramatically reduced 
when processing the data in short time [3]. 
Therefore, it is necessary to use the 

measurement signal only within dynamic state 
(while rotating a wrench to fasten a bolt). 

With the angular velocity signal ω and the 
movement time tm, the one-dimensional 
orientation of the wrench is determined by the 
Orientation-estimation module. In brief, the 
algorithm in this module is based on Newton's 
laws of motion.       

The Error-model module generates the optimal 
misalignment, ô, to compensate the estimated 
orientation, ä. This Error-model module is 
heuristically designed based-on Shaping filter 
technique and optimized with the Nelder-Mead 
Simplex Method in Low Dimensions [16].    

As the output of this orientation estimation, the 
optimal rotating angle, â is determined by 
compensating the estimated orientation ä with 
the optimal misalignment ô. This information will 
be sent as to the controller of the intelligent 
wrench for making a decision whether the 
fastening is acceptable.   

Error Model 
In many cases, the white Gaussian noise model 
may not adequate to predict all noises in a real 
system. Practically, an error model is developed 
based on a mathematic model to generate 
empirical autocorrelation or power spectral 
density data as the same as the data from 
noises of an observed system. A linear time-
invariant system, or shaping filter, provides a 
model driven by stationary white Gaussian 
noise which is determined by the power 
spectral density or autocorrelation of observed 
data. In other words, if the first and second 
order statistics of a wide-sense stationary are 
known, then a Gaussian process with the same 
first and second order statistics can always be 
generated via shaping filter [17]. 

In this paper, the error model for the orientation 
estimation is heuristically constructed based on 
the first order Markov model [18]. This error 
model generates exponentially time-correlated 
error signal which is statistically similar to the 
error from drift of the gyroscope. This model is 
described as Eq(1), where x is the state of the 

Fig. 1. Algorithm structure of the orientation estimation 
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model, T is the time correlation, and w is a 
Gaussian noise with zero mean.  

 

x'(t) = -(1/T) x(t) + w(t)  (1) 

 

As proofed in [X], the output from this model is 
has autocorrelation Ψxx as Eq(2) where δ is a 
standard deviation and τ is a time constant. 

 

Ψxx(τ) = δ 2 e(-|τ|/T)   (2) 

 

To initialize model parameter, the stationary 
signals from the pin-point gyroscope have been 
acquired to determine empirical autocorrelation 
and power spectral density of the signals. By 
curve-fitting, the initial parameter of τ is defined. 
This initial parameter will be used as an initial 
value for optimizing the error model 
parameters. 

The bias b and misalignment o of the pin-point 
gyroscope is defined as the state of this error 
model. The behavior of the misalignment is 
assumed to be exponentially time-correlated 
state as the first order Markov model. 
Therefore, the dynamic equation of the model is 
constructed as in Eq(3), where β = 1/τ. 
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This error model is driven by initial bias and 
misalignment, b0 and o0 in order. Both of the 
initial bias and misalignment will be heuristically 
optimized with the Nelder-Mead Simplex 
Method as described in the next section.  

Parameter Optimization 
The error-model parameters, β, b0 and o0 have 
been heuristically optimized with acquired data 
from 10 tests. In this paper, the Nelder-Mead 
Simplex method is applied for optimizing the 

error model parameters, because this method 
commonly used in non-linear optimization. 

Experiments 
The accuracy of this orientation estimation is 
tested with the measurement data from the test 
bench of this application. The results from this 
orientation estimation are compared with the 
rotating angles measured by the encoder of the 
test bench. In brief, the test data are acquired 
from a CRM100 pin-point gyroscope with 20 
measurement data.  

 
Fig. 2. Test bench 
 
The test bench is composed of a base, an arm 
and an encoder as shown in Fig [X2]. The 
length of the wooden arm is 80 centimeter and 
is fixed with the shaft that connects to the 
encoder. The gyroscope is mounted at the 
center of the top side of the arm.  

The measurement data are acquired while the 
arm is manually rotated 90° clockwise and 
counter-clockwise with different speed. 
Therefore, the measurement data are not 
uniform. Then, the results from the orientation 
estimation are independent on the rotating 
velocity of the arm.      

Results 
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As Fig. 3, the results show that the orientation 
estimation with help of error model (EM) is 
significantly more accurate than one without 
error model. The maximum absolute error of the 
orientation estimation without EM is more than 
1.8° within 90 second. With help of EM, the 

maximum absolute error is less than 0.8° within 
90 second. Although, there are some 
measurement data that the estimations without 
EM are more accurate than one with EM, the 
overall performance of the 1D-orientation with 
help of EM is better than one without EM. 

Fig. 3. Maximum absolute error from the orientation estimation  
 

Fig. 4. (a) Orientation estimation of the measurement No. 20, (b) Absolute error of the estimation from 
measurement No. 20 
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The EM reduces the error from sensor drift that 
accumulates over time. As Fig. 4(b), the error 
from the estimation without EM increases over 
time. But the error from the estimation with EM 
is suppressed and increases over time slower 
than one without EM. It shows that the 
implementation of the error model module is 
successfully improves the performance of the 
orientation estimation.   

Conclusion and Outlook 
The error model based on shaping filter 
technique significantly improves the accuracy of 
1D-orientation estimation with the measurement 
data from the test bench. With parameter 
optimization, the error from the orientation 
estimation with the error model is less than 1° 
within 90 second. 

For further improvement, the inertial 
measurement unit (IMU) will be applied for this 
application. With help of IMU, it is possible to 
determine 3D-orientation of an object. 
Therefore, the flexibility and reliability of the 
orientation estimation for an intelligent wrench 
will be increased.  
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