
Motion State Prediction by  
Unaided Inertial Micro-Machined Accelerometers 

Kristoph Keunecke, Gerd Scholl 
Electrical Measurement Engineering 

Helmut Schmidt University / University of the Federal Armed Forces, Hamburg, Germany 
kristoph.keunecke@hsu-hh.de 

Abstract: 
Estimating motion velocity state is crucial in dealing with inertial navigation systems (INS) or 
in situations where backing of an INS by other technologies is difficult or impossible. This 
study therefore investigates time sequences delivered by embedded inertial sensors in order 
to draw conclusions about the motion state of moving objects. Various probability tests were 
evaluated by a simple but typical measurement setup to assess robustness against random 
walk fluctuations and behavior in the constant velocity state, in order to detect transition from 
standstill to motion and vice versa. Our investigations end with a proposal for advanced 
motion state estimation algorithms, where different statistical approaches have been 
combined. 
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1  Introduction 
The satellite based global positioning system 
(GPS) has certainly revolutionized our everyday 
lives. However, electromagnetic waves are 
strongly shielded by the outer shell and walls of 
buildings. Even if the electromagnetic waves 
can penetrate into a building, reflection and 
diffraction effects makes localization and 
positioning based on electromagnetic wave 
propagation nearly impossible. Hence, there is 
still a strong demand for indoor navigation 
systems, e.g. inertial navigation systems (INS). 
Due to enormous development steps in 
performance, size and price during the last 
decade many INS today are based on 
microelectromechanical systems (MEMS). The 
output of a MEMS sensor typically represents 
the acceleration or the angular rate of the 
moving object. Consequently, if one is 
interested in the position of the moving object, 
the sensor signal has generally to be integrated 
twice with respect to time [1]. One of the most 
challenging tasks in the development of MEMS 
based INS must surely be to cope with different 
types of deterministic and stochastic error 
sources [2][3], e.g. random offset variations, 
also known as Brownian motion or random 
walk, infiltrating MEMS at the proof mass by 
random drifts of molecules [4][5]. Regardless of 
how random signals are modeled [6][7][8], 

mastering random fluctuations is still a very 
challenging task in designing advanced inertial 
positioning/tracking solutions, even if only the 
motion state is of interest. Motion state 
estimation can essentially be subdivided into 
the seemingly simple tasks of reliably detecting 
(i) standstill, (ii) transition from zero velocity to 
moving state, (iii) the unfailing detection of 
ongoing motion, and (iv) transition from moving 
to standstill.  
This article will describe various approaches 
with the aim of determining the motion state of 
an object equipped with strapdown INS. Insight 
into the demands of unaided inertial positioning 
is delivered in Section 2. In Section�3 various 
probability tests are discussed. Measurements 
to characterize their performance are presented 
in Section�4. Combining probability tests 
improves estimation results substantially. This 
will be demonstrated in Section�5. Concluding 
remarks are given in the final Section�6.

2  Requirements concerning unaided 
INS positioning 

We will start our investigations with an example 
that is illustrated in Fig. 1. The upper curve in 
Fig. 1 shows the output ay(t) of an acceleration 
sensor, which was mounted on an industrial 
robot. From standstill the sensor was 
accelerated with a nearly constant value. At 2�s  
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Fig. 1. Remaining of final velocity in spite of 
effective standstill. 

the accelerated motion enters a phase with 
constant velocity. At about 3.5�s the sensor is 
retarded with the same constant absolute 
acceleration value but opposite sign until 
motion comes to a standstill at about 4.5�s. The 
middle curve of Fig. 1 depicts motion states of 
the sensor. Here ‘0’ represents standstill and a 
‘1’ denotes motion, independent of the exact 
value of velocity or acceleration. The lower 
curve of Fig. 1 displays velocity vy(t) and sensor 
position sy(t). Vertical lines at 1�s and 4.5�s 
represent transitions between the different 
motion states 0 and 1, and vice versa. The 
short-term movement continuing for 5�s results 
in a final velocity of approximately -0.06�m/s, a 
value close to zero, but not identical to zero, 
thus resulting in a position error of 3.6�m per 
minute which continues growing linearly with 
time, although there is no motion. Clearly, the 
measurement signal is affected by vibrations, 
shocks, temperature and Brownian motion, so 
that acceleration and, accordingly, deceleration 
regimes are different in size, yielding a velocity 
unequal to zero. Establishing a threshold 
velocity [9] in terms of a tolerance band around 
zero velocity can result in significant positioning 
errors. Typically, specialized test routines have 
to be designed for the target applications, e.g. 
for personal navigation systems operating on 
gait analysis [10][11]. In [12] and [13] zero- 
velocity updates are employed based 
respectively on likelihood tests and hidden 
Markov models. To reduce position errors, 
calibration intervals are used for zero-velocity 
determination. For our universal example this 
means that if it is possible to determine motion 
state, i.e. standstill, the integration routine of the 
navigation/positioning algorithm can be stopped 
and thus error integration during standstill can 
be avoided.

3  Tests 
In the following, let x(n) be the observables of a 
stationary discrete random sequence X(n) with 

finite support, i.e. 1���n���N, whose statistical 
properties do not evolve over time, 

�
x� � 1

N
� xk � µ�

N

k�1

� (1)

and 

�
s2 � 1

N� � 1
�	xk � x�
 � ��2

N

k�1

� (2)

denote the unbiased estimation for the 
expectation µ and variance �2, respectively, 
where xk describes observation at position k. 

Fig. 2. Approximating a histogram built by raw 
acceleration data lasting for 4�s at a standstill by 
means of a Gaussian distribution function. 

With reference to our simple example, during 
standstill and during a uniform movement 
without acceleration sensor output should equal 
zero, but random processes generate a 
probability density function that is shown in 
Fig.�2. Data were taken over a time interval 
lasting for 4�s with a sampling rate of one 
sample per ms. The histogram can be 
approximated by a Gaussian distribution 
function for which the standard deviation was 
evaluated as �� � s � 0.0093 m/s2. 
Generally, the INS data is interpreted by 
statistical inference, i.e. hypothesis testing, 
where in our case the null hypothesis H0
represents standstill and H1 stands for a moving 
sensor or object [14]. In the classical approach 
a test statistic is derived from the measured 
data and compared with a predefined critical 
value (CV) on the basis of the significance level 
�, where � is often chosen as e.g. 5�%. In our 
case CV is determined in a calibration phase 
before the navigation process starts. If the 
routine decides on motion, the navigation 
algorithm will be used otherwise the bias of the 
INS will be compensated for. A Type�I error 
occurs if H0 is rejected even if H0 is in fact true. 
A Type II error occurs if a decision is made for 
standstill (H0) even if the alternative hypothesis 
H1 were true. Clearly, Type II errors cause 
major deviations from the true position. 
Segmentation is a popular technique in time-
series analysis for estimating H0 and H1. 
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Therefore a subset of N observations of a 
sensor signal will be examined, generally. In the 
following we present  

• several normality tests and  
• one time-based approach  

to predict the motion state of unaided 
accelerometers.  

Grubbs test for outliers (GR)
Typically, one or more samples stand out of the 
crowd, indicating a starting movement. These 
samples are commonly called outliers [15]. With 
the well known transformation 

� T � X � µ
�

� (3)

the probability density function of the random 
variable X is normalized to the standard normal 
distribution, where µ has to be estimated by x�
and � by s resulting in a loss of 2 degrees of 
freedom in the test statistics. To determine 
whether an element xk is an outlier, the test 
statistic has to be compared with a critical value 

�
CV � �N � 1

N
� t��N�2

2

N � 2 � ���N�2
2 � (4)

in which t��N�2
2  is derived from the t-distribution 

with N−2 degrees of freedom and �� indicates 
the modified significance level �/2N. If 

� �xk � x��
s

� CV� (5)

is true, then xk will be rejected [16]. In our 
algorithm we first determine x� and s from all N
observations and test whether Eq. 3 is true. If 
this is the case, x� and s will be recalculated with 
N−1 sample points and the test will be carried 
out again. This procedure is performed 
consecutively for all sample points until no 
further outliers can be detected. If there is more 
than one outlier, we decide on motion, 
otherwise standstill is assumed. GR is the sole 
test routine investigated in this article, which 
does not need a calibration routine.  

Kolmogorov-Smirnov (KS) normality test 
There is a large number of statistical tests 
dealing with the evaluation of supposed 
normality for a given data set, e.g. Kolmogorov-
Smirnov. Assume, that the elements of x(n) are 
arranged in ascending order and follow the 
presumed Gaussian cumulative distribution 
function F(x), where F(x) is a theoretical 
quantity that can be estimated in terms of data 
using the empirical distribution function 

� FN(x) � nObs���x
N

. (6)

Here nObs � x describes the number of 
observations that are smaller than or equal to x
[17][18]. The vertical distance between F(x) and 
FN(x) can now be used to introduce a statistical 
measure. In the case of KS, the test statistic is 
given by the maximum distance 

� D � max�	D��D�
� (7)
between F(x) and FN(x) [19], i.e. where D�

denotes the supremum of the magnitude 
FN(x)���F(x), if FN(x)���F(x); and D� stands for 
the supremum of magnitude when FN(x)�<�F(x), 
respectively. 

Shapiro-Wilk (SW) normality test 
SW defined another normality test statistic 

�
W � �� ��x�N

��� �2

� 	xk � µ
2N
���

� (8)

according to [20][21]. �k denotes weights, which 
depend only on the interval length of input data. 
Thus W is the quotient of an estimated variance 
in the numerator that is computed by means of 
the slope in a quantile-quantile plot, in which 
the samples of x(n) are compared with the 
order statistics of a normally distributed set, and 
sample variance in the denumerator. Here 
again, µ is estimated by the sample mean x�. 
For a Gaussian entity W converges to its 
maximum, 1, otherwise it tends towards the 
lower bound, 0. 

Sample variance (S2) of a time-series
Fluctuations in noise level due to movement or 
variations of environmental conditions often 
result in an increased statistical spread s of 
x(n). These deviations can directly be detected 
in recorded time-series using second order 
statistics 

� s2 � E�x� � µ�,� (9)
where E{�} denotes the statistical expectation. 

4 Test evaluation 
The measurement setup consists of (i) a three-
axis MEMS low-cost inertial sensor [22], which 
is (ii) integrated into a radio system [23] 
transferring raw acceleration data to a 
(iii)�control and computing environment. 
In this experiment the acceleration sensor was 
mounted on a carousel, a wooden plate with a 
diameter of 2�m, mounted on a roller bearing. 
The carousel was rotated by hand. After an 
initial push the system slows down due to 
internal friction losses until it comes to a 
complete stop. During the first few seconds 
there is a strong sensor signal, which then 
slowly fades away until the signal finally falls 
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below the sensitivity limit. This is shown in the 
upper curve of Fig.�3. Sensor path length during 
motion s, shown in the lower curve of Fig.�3, 
can be calculated by  

� s � � � r�� (10)
where � is the rotation angle and r�=�1�m is the 
distance of the sensor to the centre of the 
carousel. Hence, the total path length of the 
sensor during motion is stot�=�41.58�m, 
corresponding to 6.62�turns of the carousel.  

Fig. 3. Raw acceleration data, real movement 
decision behavior and navigation results with used 
algorithms. 

In the lower curve of Fig. 3 the acronyms 
indicate the moments when the corresponding 
probability tests decided on standstill, i.e. when 
a Type II error occurred for the first time. We 
thus define a navigation error serr as the 
difference between total path length stot and the 
path length that can be associated with the 
moment when the Type II error occurred.  
Shortly after the carousel was set in motion GR 
(serr�=�40.54�m) decided on standstill as the 
outlier could no longer be detected. S2 type II 
error occurs approximately after half the motion 
time equivalent to serr =�11.41�m. In our 
experiment KS delivers serr =�7.88�m, whereas 
SW exhibits serr =�5.67�m. As discussed in the 
literature [24][25] SW generally has the highest 
discriminatory power when deviations  from 
normality has to be detected. As expected, the 
more the sensor signal resembles the sensor 
signal during standstill, the higher is the error 
decision rate. This is also documented in Fig. 4. 
     The stability against random walk 
fluctuations in standstill can be seen starting 
from 36�s. Here only inherent sensor noise is 
detected at the sensor output. By defining a 
decision error rate (DER) the behavior of the 
introduced probability tests in standstill is now 
carried out. With DER we mean the number of 
incorrect decisions divided by the total number 
of decisions during the time period of 
observation.  

Fig. 4. Decision behavior of used algorithms. 

It can be seen that with exception of GR all the 
tests deliver statistically incorrect decisions. 
The decision behavior of SW and KS is 
characterized by only a few sharp peaks, 
whereas the time periods for wrong decisions 
are larger for S2 yielding weaker DERs in 
standstill compared to other approaches. With 
long-term standstill measurements GR gives 
the best performance with a DER of 
approximately 1.5�10-3. KS (DER�=�10-2) shows 
marginal advantages compared to SW 
(DER�=�3�10-2). S2 delivers a DER of roughly 
10�% in standstill and is furthermore affected by 
temperature variations during the 
measurement. 

5  Modified motion prediction approach 
Based on the contributions made in [26] and 
our presented measurement results it was 
shown that one single approach will definitely 
not fulfill all the necessary requirements for 
highly accurate positioning tasks, i.e. a low 
DER in standstill, unambiguous detection of 
transition from standstill to motion and vice 
versa, and a high reliability in motion 
recognition, especially when the sensors have 
to operate close to or below the sensitivity limit. 
Combinations of probability tests are often a 
viable solution. In what follows we present 
GRSW, where we combined two tests based on 
normality analysis, i.e. GR and SW. 
Here, GR is best suited for finding outliers and 
thus finding the exact moment of a transition 
from standstill to motion. If SW indicates a 
transition at the same moment, reliability of 
estimation can be improved significantly. Fig.�5 
presents an example, in which a transition from 
standstill to motion is clearly indicated at about 
5�s. 
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Fig. 5. Decision behavior of stand-alone GR and 
SW and modified approach GRSW. 

Incorrect decisions are made frequently by SW 
in the time interval starting at 23�s, where the 
sensor signal insidiously approaches the 
sensitivity limit. Comparing the true motion and 
standstill states of sensor unit shows that the 
DER of SW in motion state is significantly 
higher than in standstill, which is due to small 
non-deterministic, non-Gaussian variations 
caused by a slight jerking movement of the 
carousel. This characteristic feature can be 
used to classify motion states in defining a 
decision error rate for motion, MDER. Thus, if 
MDER is significantly higher than the mean 
DER during the calibration phase, which shall 
be denoted by CDER���������, the evaluating algorithm 
decides on the motion state. This means, that a 
CV for the motion state can be calculated as 

� CV�(MDER) � m � DER,� (11)
where m�>�1, generally. For our experiment a 
value of m�=�1.1 delivered best results, which is 
shown in the lower curve of Fig.�5. With a 
sample rate of 1�kSamples/s the decision on 
standstill is typically made at about 1�s after the 
actual stop of motion. But since the angular 
velocity shortly before the carousel comes to a 
final stop is very small, path length errors due to 
a delayed decision are also small. 

6  Conclusion 
In this article various probability tests were 
evaluated in their performance to detect the 
motion state of objects equipped with inertial 
sensors, especially MEMS acceleration 
sensors. Principally, all tests can be used for 
detecting a beginning motion, as the 
observation vector typically shows 
characteristic variations. It has been shown that 
none of all the tests under investigation was 
able to fulfill all the requirements at the same 
time and thus a combination of probability tests 
for motion state detection is strongly 
recommended. Which combination should be 
chosen depends on the final target application. 
With GRSW a DER in standstill better than 10-4 

under random fluctuations and variations in 
noise floor was achieved. 
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