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Abstract 
The process capability is an important indicator for stable and reliable manufacturing processes. 
Hence, the measurement uncertainty and the unambiguous calculation of geometrical parameters play 
an important role in quality control. A major deficiency pertains to the evaluation of the uncertainty of 
surface roughness parameters. Already simple roughness parameters have a large statistical variance 
depending on the manufacturing process and not on the measuring system. For industrial companies 
it is essential to find rules to express the surface roughness uncertainty, particularly for geometrical 
tolerancing. By describing a surface parameter as a statistical variable, it will be shown that the uncer-
tainty can be expressed more precisely than in usual practice. As an example, the rule of thumb “six 
times Ra is approximately Rz” is derived from a statistical model of the surface. 
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Introduction 
The characterization of the surface roughness 
differs greatly from other geometric attributes 
such as the shape or dimensions of a compo-
nent. The surface is generally the sum of differ-
ent geometric structures, the shape of which - 
together or individually - is decisive for the func-
tion of a component. The occurring structures 
cover a high rescaling range. Fine submicron 
structures as well as micron "macro-structures" 
have to be evaluated. 

Many different parameters are applied to rea-
sonably characterize these complex geometric 
structures. Heavily used functional surfaces, 
usually with non-homogeneously distributed 
geometric structures, are particularly critical. 
The consequence is that the calculated param-
eters are widely scattered due to the surface 
statistics. This often leads to surface measuring 
devices or even manufacturing processes being 
incorrectly evaluated as "not capable." Fur-
thermore, the tolerancing is often unclear. 

This article offers insight into how roughness 
parameters dependent on the manufacturing 
process can be described with probability den-
sity functions. The parameters Ra  and Rz  are 
examined according to DIN EN ISO 4287 [1], 
and the parameters Rk , Rpk  and Rvk  are 
examined according to DIN EN ISO 13565, part 
2 [2]. 

Description of roughness parameters as 
random variable 
The statistical spread of roughness parameters 
is strongly influenced by the random character 
of the surface properties. Thus a surface pa-
rameter acts like a random variable, the distri-
bution of which is a factor of the surface charac-
teristics - and the surface characteristics are 
determined in turn by the manufacturing pro-
cess. 

The following section describes the spatially 
discreet roughness values kr  ( 1,...,k n�  with 
n�N ) supplied by the measuring device as the 
realization of a random variable r  with the 
density function � �p r . To simplify the arithme-
tic, it is assumed that the roughness values are 
uncorrelated. The expectation for the random 
variable would be zero. This requirement is 
generally met by previous profile filtering. 

Two known, assumed, zero-mean distribution 
densities will be examined to describe the 
roughness: a uniform distribution � �u r  with the 
range a�  and the resulting standard deviation, 

3r a� �  and Gaussian distribution � �g r  with 
the standard deviation � . The uniform distribu-
tion has no direct correlation to a specific manu-
facturing process and is intended only to illus-
trate the mathematic descriptions. On the other 
hand, Gaussian distribution can describe manu-
facturing processes with indeterminate edge 
and symmetrical amplitude distribution. This 
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includes e.g. the manufacturing process of 
grinding. 

Description of parameter Ra as random var-
iable
The parameter Ra  is often used when 
tolerancing rough surfaces. It describes the 
arithmetical mean deviation of the roughness 
profile and is defined by 

1

1 n

k
k

Ra r
n �

� � . (1) 

Thus the parameter Ra  from equation (1) is the 
result of the averaging of the absolute values of 
the profile ordinates kr . It can be statistically 
evaluated applying the deviation propagation 
method with the sensitivity coefficients 1 n .
When the profile ordinates kr  are regarded as 
the realization of the random variables r , the 
distribution densities � �u r  and � �g r  must be 
examined, which leads in turn to the expecta-
tion rµ  and the standard deviation r� . The 
correlations shown in Table 1 are obtained for 
the existing distribution densities (uniform dis-
tribution, Gaussian distribution) by calculating 
the first and second statistical moments. 
Table 1: Expectation and standard uncertainty of 
arithmetical mean deviation of the roughness profile. 
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As the table shows, the overall standard devia-
tion is reduced by the factor 1 n  as compared 
to the single standard deviation. Building the 
sum in equation (1) has an averaging effect. 
This is also referred to as an “integral parame-
ter” that provides statistically stable values. 
However, the disadvantage of an integral pa-
rameter is that locally pronounced structure 
variations that are relevant to the function (e.g. 
grooves or peaks) are also averaged, and the 
resulting parameter offers virtually no conclu-
sion regarding the local surface texture. The 
parameter Ra  is comparable to the square 
mean deviation of the roughness profile Rq .
While Rq  is applied to estimate the standard 
deviation in the sense of the smallest square 
deviations (L2 norm), Ra  can be interpreted as 
a robust estimation of the standard deviation 
based on the smallest absolute deviations (L1 
norm). 

Description of parameters Rt and Rz as ran-
dom variable 
The parameter Rt  describes the roughness 
depth, meaning the difference between the 
profile peak and the profile valley within a speci-
fied measuring length. It is defined as: 

� � � �
1..1..

max mink kk nk n
Rt r r

��
� 
  (2) 

Rt  reacts very sensitively to outliers and is 
used particularly to detect cracks in the bounda-
ry layer. Examination of the uncertainty for Rt
can no longer be realized with the simple devia-
tion propagation method, as it could be in the 
case of the parameter Ra . The probability den-
sity � �p r  used as the basis for all profile ordi-
nates kr  must be examined here. 

The first step is to determine the probability 
� �P X�  that a profile value will assume exactly 

the value � �min kX r� , 1,..,k n� , and that the 
remaining 1n 
  profile values are within the 
interval � ,X X Rt� . Since there are n  possible 
profile points, it follows that: 

� � � �
1nX Rt

X

P X n p d

�� �

� � � �
� �
� � � . (3) 

The result of equation (3) for the probability 
density � �,p Rt n , when all possible variation for 
X  are considered, is: 

� � � � � �
1

,
nX Rt

X

p Rt n n p d p X dX
Rt


� �


�

� ��
� � �
� � �

� � � �  (4) 

For instance, example (4) for uniform distribu-
tion becomes much simpler: 

� �

� �
� �
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� � � �

� �
 (5) 

Equation (5) can be used to find analytic solu-
tions for the expectation and for the standard 
deviation of the random variable Rt . These 
expressions are shown in Table 2. 

Table 2: Expectation and standard uncertainty of the 
roughness depth for uniform distribution. 
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In the case of Gaussian distribution, equation 
(4) is analytically no longer a closed form ex-
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pression, meaning that numerical integration 
should be performed. Figure 1 shows the pro-
gression Rt Raµ µ  and figure 2 the progression 

Rt r� �  along the course of roughness values 
n , for uniform distribution as well as for Gauss-
ian distribution 

Fig. 1. Quotient Rt Raµ µ  of expectations as a factor of the number n  of roughness values. 

As figure 1 shows, the quotient Rt Raµ µ  of uni-
form distribution converges towards the value 4. 
This behavior is plausible because uniform 
distribution has upper and lower limits and its 
expectation for Rt  has to assume a maximum 
as the quantity of profile ordinates increases. 
Thus the quotient Rt Raµ µ  for Gaussian distri-

bution increases very monotonically, since the 
probability that individual outliers will be evalu-
ated becomes greater as the quantity of profile 
ordinates increases. When n  = 1000 values, 
the quotient for Rt Raµ µ  is about 8. This value 
is often reached in practical applications. 

Fig. 2. Quotient Rt r� �  of standard deviations as a factor of the number n  of roughness values. 

The quotient Rt r� �  for uniform distribution 
(Refer to Figure 2) behaves proportionally to 
1 n . This behavior is plausible too, because, 
as described earlier, the expectation converges 
towards a finite value. In contrast, the course of 
standard deviation of Rt  for Gaussian distribu-
tion as a factor of the quantity of roughness 
values proceeds very differently. With 1000 
values, Rt�  is reduced to only half of the value 

r�  of the single ordinates. So the probability 
density function of the roughness ordinates has 
a major effect on the standard deviation of the 
parameter Rt .

The standard deviation for the parameter Rz
can be stated applying the estimations for the 
parameter Rt . Rz  is the mean value of five Rt

values, each of which is determined within a 
single sampling length. When n  described the 
quantity of roughness values for each single 
sampling length, the standard deviation is re-
duced to 5Rz Rt� �� .

Expectations for the parameters Rk, Rpk 
and Rvk 
The basis for the parameters according to DIN 
EN ISO 13565, part 2 is the Abbott curve, which 
is defined as an inverse amplitude distribution 
function of the roughness ordinates and de-
scribes the material ratio Mr  as a factor of the 
depth in the roughness profile (Figure 3 shows 
an example of the Abbott curve for Gaussian 
distribution of roughness ordinates). 
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Fig. 3. Parameters Rk , Rpk , Rvk  and 1Mr , 2Mr  of the Abbott curve. 

To calculate the parameters, a line of best fit is 
calculated according to the standard, with a 
minimum slope for the central range of the ma-
terial ratio curve that includes 40% of all of the 
measured profile points. The vertical spacing of 
the intersection of these lines at 0%Mr �  and 

100%Mr �  is referred to as the core roughness 
depth Rk . The intersections of the lines with 
the Abbott curve produce the material ratios 

1Mr  and 2Mr . The parameters Rpk  and Rvk
are each designated as the side length of a 
triangle with an area equal to the peak area 1A
or the groove area 2A .

The Abbott curve is efficiently numerically cal-
culated by sorting the profile ordinates in de-
scending order. Each profile ordinate kr�
( 1,...,k n�  mit n�N  ) with 1 2 .. nr r r� � �� � �  corre-
sponds to a material increase of 100 n  percent. 

kr�  can be statistically described by the probabil-
ity density function 

� � � � � �

� � � � � �
1

!
! 1 !k

n k kr X

X

np r
n k k

p d p d p X dX
r


 
�


� 
�

� �

 


� � � ��
� � � �

� � � � �
� � �

�

� � � �
 (6) 

Equation (6) can be simply derived having in 
mind that for each position k , there are n k

values which are lower than X  and 1k 
  val-
ues which are greater than X .

Now the case is to be examined in which there 
is an infinite number of roughness ordinates 
and the Abbott curve follows a theoretically 
ideal course. Assuming that the roughness 
ordinates have no mean values and Gaussian 
distribution, the following distribution function 
results: 

� � � �
1 erf

2
2r

r

Mr r g d
�

� �
 � ��� �� � � ��  (7) 

with the so-called "error function" 

� � 2

0

2erf
r

r e d
�� �
	 � .

The Abbot curve shown in figure 3 is calculated 
from the inverses of the distribution function 
according to equation (7): 

� � � �1erf 1 2 2r Mr Mr
� 
 �

To calculate the parameter Rk , a straight line 
of best fit in the range of 30%-70% (corre-
sponds to cover of 40%) of the material ratio is 
adapted for symmetry reasons. Thus the course 
of the function of the straight line is 
� � � �0.5r Mr m Mr� 
 , whereby m  is the slope 

of the straight line. The slope is calculated ac-
cording the standard by minimizing the least 
squares sum between the Abbott curve and the 
straight line, here in the range 0.3 0.7Mr� � :

� � � �� �
0.7 2

1

0.3

erf 1 2 2 0.5
m

min Mr m Mr dMr
� �

 � 
 
� �

� �
�

 (8) 

Equating the first partial derivative after the 
unknown slope to zero leads to the solution for 
the sought slope: 

� � � �

� �

0.7
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2

0.3

erf 1 2 2 0.5
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2.5739
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m
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�
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 (9) 
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Applying this equation, the parameter Rk  is 
calculated as 

2.5739Rk m� 
 ��  (10) 

Taking into consideration the equation (7), the 
parameter 1Mr  is calculated as 

1
2 21

2 2
0.0991

merf
RkMr Mr

� �
 
� �� � �� �� �� �
� �

�

 (11) 

and, for reasons of symmetry, the parameter 
2Mr  is 

2 1 1
0.9009

Mr Mr� 

�

 (12) 

The area below the Abbott curve in the range 
2Rk r� � �  is 

2

2

2

1
21

2

1exp
8

1
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A d
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�� �
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� �� �

� �� �� � �� �� �� �� � � 
 
� �� �� ��	 �� �� �� �� �

� �
 (13) 

And for the triangle of equal area, the following 
applies: 

11
2

1
2 2

4

Rpk MrA

merf
Rpk

�
�

� �
 
� ��� �� �

 (14) 

Using the result from equation (13), the param-
eter Rpk  is calculated as a factor of Rk  to be 

2

2
12 2 exp
8

1
1

2 2
0.3672

m

Rpk Rk
m merf

Rk

� �� �

� �� ��� �� �� 
� �� �� �� �	 
 
 
� �� �� � � �� �� �� � � �� �� �

�

 (15) 

And for reasons of symmetry, this also applies: 
Rvk Rpk� .

The estimation previously performed is to be 
checked using an example of an actual meas-
urement. This was done by measuring a rough-
ness standard with a mean roughness depth of 

1.5Rz m�  . Figure 4 shows the profile of the 
roughness standard along an evaluation length 
of 4 mm. The amplitude distribution of the 
roughness standard can be described well with 
a Gaussian distribution. The surface topogra-
phy was created by the manufacturing process 
of grinding. 

Fig. 4. Roughness profile of a standard. 

The standard deviation of the profile ordinates 
can be estimated by the square mean deviation 

Rq�� . Thus: 281Rq nm� . The core rough-
ness depth is calculated according to the norm 

734Rk nm� . 2.5739 723Rk Rq nm� ��  applies 
to the estimation. Calculating the parameters 
Rpk , Rvk , 1Mr  and 2Mr  according to the 
standard leads to 247Rpk nm� , 224Rvk nm� ,

1 8.67%Mr �  and 2 87.95%Mr � . The results of 

estimation from the standard deviation are 
0.3672 265Rpk Rvk Rk nm� � �  as well as 

1 9.91%Mr �  and 2 90.09%Mr � . The calculat-
ed parameters come very close to the fore-
casts. 

Under actual conditions, there is a finite number 
of profile ordinates. Sorting the profile ordinates 
generally leads to high uncertainty around the 
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edges of the Abbott curve. The result is that 
particularly the paramteters Rpk  and Rvk  can 
scatter substantially. If a variance 2

k�  and co-
variance 2

,k j�  is assigned to each discrete point 
on the Abbott curve, the standard deviation of 
the parameters Rpk  and Rvk  is: 

1 1 1 1
2 2

,
1 1 1

2 2
1

n Mr n Mr n Mr

Rpk k k j
k k j kMr n

� � 
 �! " ! " ! "# $ # $ # $

� � � �

� � � � �
� � � �  (16) 

and 

1
2 2

,
2 2 1

2 2
1 2

n n n

Rvk k k j
k n Mr k n Mr j kMr n




� � � � � �% & % &! " ! "

� � � � �

 � � � � .

 (17) 

Conclusion 
Surface topography seems like a random pro-
cess that depends on the manufacturing meth-
od and has the effect of an input parameter on 
determination of parameters. This means that 
the parameter itself is a "natural" or "unavoida-
ble" random variable - the statistical properties 
of which depend on the manufacturing process 
- that needs to be taken into consideration for 
tolerancing of a component. In contrast, the 
uncertainty aspects of the measuring device 
play only a secondary role. 
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