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1. INTRODUCTION
During the last decades, thermal imagers have evolv��������	
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����-of-the-art
focal plane arrays (FPA). Nowadays, different trends of development can be seen, for example decrease
in pixel size, new materials (InAs/GaSb superlattices) and especially multispectral imagers. A multi-
spectral imager is able to acquire information in different channels of the electromagnetic spectrum at the
same time, while the standard broadband systems only work in one channel of the electromagnetic
spectrum. One type of multispectral imager is the so-called Dual-Band Camera which typically acquires
images simultaneously in the 8 � 12 μm (LWIR) and 3 � 5 μm (MWIR) spectral range. Advantages
foreseen for these cameras are manifold. They range from simply using the pros and cons of both bands
at the right time for automatic and human target recognition due to specific emissivity features. In
Germany, AIM INFRAROT-MODULE GmbH in co-operation with the Fraunhofer IAF (Institute for Applied
Solid State Physics) developed a Dual-Band Detector based on QWIP technology [1, 2]. This detector-
cooler-assembly was made available to FGAN-FOM for system integration which was conducted in co-
operation with IRCAM GmbH. The necessary special IR Dual-Band Optics was developed in co-operation
of FGAN-FOM and Opto-System-Technik. All components together resulted in the IR Dual-Band Camera
demonstrator which was then experimentally assessed in the thermal imager laboratory of FGAN-FOM.
Additionally this demonstrator was used to test dual-band image fusion techniques in the laboratory as
well as in field trials.

2. THE IR DUAL-BAND CAMERA DEMONSTRATOR
The IR-Dual-Band Camera demonstrator is based on a cooled QWIP FPA detector with 384 x 288
detector elements of 40 μm pitch. It is operating simultaneously in the spectral range of 4.3 μm to 5.3 μm
(in the following: MWIR) and 7.7 μm to 8.7 μm (in the following: LWIR), pixels for the two spectral ranges
being stacked one upon the other [2]. So the acquisition occurs simultaneous spatially as well as
temporally. This is the ideal acquisition for a multispectral system from the signal processing point of
view.
Two optics were specially developed for the demonstrator. The first optic consists of a mirror/lens
combination for a dual field of view. Its construction was laid out to assure a stable focus for both bands
also under changing thermal conditions. Focal lengths are 86 mm for the Wide Field of View (WFOV) and
390 mm for the Narrow Field of View (NFOV). The resulting fields of view (FOV) are 10.2° x 7.7° and
2.3° x 1.7° respectively, F-number is two for both fields of view. The second optic is a standard 100 mm
F/2 refractive system equipped with an anti reflective coating suited for both spectral ranges and results in
a FOV of 8.8° x 6.6°.
Image acquisition is carried out with 14-bit depth and up to 300 Hz frame rate. The integration time
depends on the frame rate. Typically a frame rate of 100 Hz is used which corresponds to an integration
time of 6.8 ms. The acquisition soft- and hardware allows the loss-free image acquisition up to the
maximum frame rate. It shows both bands simultaneously and additionally allows the superposition of the
two bands in real time false color presentation.

3. EXPERIMENTAL ASSESSMENT
Up to now no commonly agreed rules for the experimental assessment of multispectral imagers exist.
Based on experience with such systems it is recommended to use the figures of merit for broadband
thermal imagers and to conduct three additional measurements with regard to the spectral crosstalk, the
temporal synchronization and the spatial pixel alignment [3]. In the following examples are presented for
experimental results on Spectral Response, System Transfer Function (SiTF), temporal and spatial Noise
(Noise Equivalent Temperature Difference, NETD, and Inhomogeneity Equivalent Temperature
Difference, IETD), and Modulation Transfer Function (MTF). For all measurements presented here, the
100 mm F/2 optics and an integration time of 6.8 ms corresponding to 100 Hz frame rate were used.

2.3
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3.1 Spectral Response and Spectral Crosstalk
The spectral response of the demonstrator was measured using equipment developed by FGAN-FOM.
This equipment is based on a glow bar as radiation source, an integrating sphere to achieve a
homogeneous radiation and narrow filters for the spectral selection. It results in the normalized spectral
response as presented in Figure 1.
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Fig. 1: Normalized spectral response for the two bands of the Dual-Band Camera demonstrator.

Based on these measurements, the central wavelengths were found to be 4.8 μm and 8.2 μm
respectively. The full width at half maximum is approximately 1 μm for both bands, so the overall spectral
behaviour corresponds to the typical QWIP characteristics. From the data in Fig. 1 it is obvious that the
LWIR band has some response in the MWIR, whereas it is not vice versa. The contribution of the spectral
crosstalk to the response in the LWIR band is approximately 7 %. A reason for this crosstalk has not been
determined yet, but up till now it is also unknown how such a crosstalk influences possible applications
[3].

3.2 System Transfer Function (SiTF) and Noise
The SiTF describes the system response in form of output signal (here: digital levels, DL) as function of
input signal (here: temperature). The responsivity is the slope of the SiTF at a given scene temperature. It
is calculated by deviation of the SiTF at this temperature.
For measuring of the SiTF a black-body was placed in front of the optics, covering it fully. Using the digital
output, image sequences were recorded in the temperature range from 5 °C to 75 °C with a step of 5 K
and an additional measurement at 26.85 °C (300 K). These image sequences were averaged and then
the average signal in dependence of scene temperature was calculated. From this data the responsivity is
calculated for a scene temperature of 300 K. The temporal noise is determined for 300 K scene
temperature using the data acquired during the SiTF measurement. It is calculated separately for each
pixel in the time domain and then averaged over all pixels excluding bad ones. The ratio calculation
between temporal noise and responsivity results in the Noise Equivalent Temperature Difference (NETD).
The Fixed Pattern Noise (FPN) is calculated in dependence of scene temperature, again using the data
acquired during the SiTF measurement. First, the image sequences were averaged in order to remove
the temporal noise. Then the standard deviation of the signal was calculated using a high pass filter. As
the FPN depends on the scene temperature it was averaged in the temperature range from 10 °C to
45 °C for comparison.
As shown in Figure 2, the behaviour is different for the two bands. For most temperatures, the MW signal
is lower than the LW signal. Also, the LWIR-SiTF is more linear than the MWIR-SiTF, a typical feature
already known from single band QWIPs and a behaviour that should be considered when signal (two-
band) processing is applied.
Table 1 shows the response to be approximately a factor of two higher in the MWIR than in the LWIR. As
the temporal noise is slightly higher in the MWIR then in the LWIR, the NETD in the MWIR is only
approximately a factor of 1.75 better compared to the LWIR. In spite of these differences the bands are
very close together in their performance. The IETD is approximately the same for both spectral ranges.
Although not perfect, the differences between the MWIR and the LWIR are within a magnitude that not
automatically favors the MWIR spectral range. This is advantageous for signal processing as well as for
practical use. For example the selection of the best band is not limited by the camera performance as had
been the case in all prior dual-band cameras we investigated in the past.
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MWIR LWIR
Response at 300 K 58 DL/K 29 DL/K

Temporal Noise at 300 K 1.9 DL 1.7 DL

NETD at 300 K 32 mK 56 mK

Fixed Pattern Noise (10 °C � 45 °C) 1.6 DL 1.3 DL

IETD (10 °C � 45 °C) 27 mk 23 mK

Table 1: Performance data of the Dual-Band Camera demonstrator for both spectral ranges. The values were
measured with 100 mm F/2 optics at 100 Hz frame rate and 6.8 ms integration time respectively

(DL: digital levels).
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Fig. 2: SiTF of the Dual-Band Camera demonstrator for both spectral ranges measured with 100 mm F/2 optics
at 100 Hz frame rate and 6.8 ms integration time (DL: digital levels).

3.3 Modulation Transfer Function and Spatial Alignment
The Modulation Transfer Function (MTF) is the parameter that describes both the spatial resolution and
image quality of an imaging system in terms of spatial frequency response. The MTF concept is not
suited to assess the spatial transfer characteristics of an advanced thermal imager (e. g. Focal Plane
Arrays) as a whole. Here, a separation in prefilter MTF (all components that act on the signal before
sampling, e. g. front optics, detector etc.) and postfilter MTF (all components that act on the signal after
sampling, e. g. electronics, video display etc.) is necessary [4]. As the measurements for the Dual-Band-
Camera demonstrator were done using the digital signal, the measured MTF corresponds to the prefilter
MTF. Different methods for measuring the MTF are known. The one applied here is the so-called
scanning edge method. For this method, an edge image is moved in small steps over the detector mosaic
and the signal of one detector element is measured in dependence of edge position. The resulting edge
function is deviated to get the Line Spread Function (LSF) from which the MTF is derived by Fourier
transformation.
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Fig. 3: LSF (left) and MTF (right) of the Dual-Band Camera demonstrator measured horizontally when equipped
with the 100 mm F/2 Dual-Band Optics. Presented are both spectral ranges. Additionally pitch and
Nyquist-Frequency are given within the graphs.

Figure 3 shows LSF and MTF of the IR-Dual-Band-Camera demonstrator when equipped with 100 mm
F/2 optics for both spectral ranges and horizontal measurement. It shows LSF and MTF to be
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independent from the spectral range and this holds true for also for vertical measurement. The LSF is
atypically narrow for a QWIP detector, resulting in an undersampled MTF. It can thus be concluded, that
the methods used to improve the detector MTF [1] were successful.
LSF and MTF automatically give a statement about the spatial alignment of a multispectral system if the
measurement is conducted at the same time in all spectral channels [3]. As this was done here, it can be
concluded that a perfect spatial alignment is given and thus superimposition of the bands is possible
without disturbing effects. This conclusion is possible because a misalignment would result in differences
in LSF and/or MTF of the two bands [3].

4. DUAL-BAND IMAGE FUSION TECHNIQUES
Dual-Band image fusion techniques were studied at FGAN-FOM for some time already before the
IR Dual-Band Camera demonstrator was available. They were based i. e. on single band MWIR and
LWIR QWIP cameras. The problem with a two camera approach is that a lot of effort goes into pixel
registration, a problem that vanishes with a true Dual-Band System.
An often used approach for multispectral image fusion and one also available in the software of the
demonstrator is color fusion. Here, for each band a different color (for example red and blue for two
bands) is used, resulting in a false color presentation of the fused information. The problem associated
with this approach is the dependence of the resulting image from the scaling (gain and offset) applied to
convert the information into 8-bit for presentation. Examples for this technique can be found in the
literature [6, 7].
Another approach is the measurement of the absolute temperature based on the ratio principle [8-10].
Although this method looks very promising, it is problematic for low scene temperature applications
because the reflective radiation component is neglected.
We developed a novel method in order to make optimum use of the differences of the two bands in
amonochrome monitor giving specific enhanced contrasts to objects of interest. The basic idea is simple
and makes use of a band dependence on an object parameter (emissivity etc.). In order to extract these
differences, the bands have to be adapted somehow because the SiTF are different (compare Figure 2).
If the bands are adapted, ratio or subtraction reveals the differences. As there is a complex behaviour of
emission, reflection, transmission and path radiance in both bands it is in most cases difficult or even
impossible to extract the exact physical origin for a signal difference. The approach was to calibrate the
two bands in apparent temperatures (Tapp,LW; Tapp,MW) and then calculate the ratio (RT) or the difference
(DT) of the apparent temperature :

MWapp

LWapp
T T

T
R

,

,
� (1)

MWappLWappT TTD ,, �� (2)

For calibration, a method was developed that uses two reference images at known temperatures and the
once measured SiTF of the two bands [11].
An example for the method is shown in Figure 4. It shows a cup filled with hot water in front of a panel
with printed bar patterns. The cup itself is also printed with some kind of advertisement. The scene was
recorded with the IR Dual-Band Camera demonstrator and the acquired data were calibrated in apparent
temperatures. In Figure 4 this calibrated data are presented using the same temperature range for both
spectral ranges. With the standard linear scaling it is impossible to show the bar pattern as well as the
printing on the cup at the same time. So, the data are shown with two different temperature ranges. The
left image shows the printing on the cup, which is more prominent in the LWIR, whereas there is no
contrast in the background. The right image shows the bar pattern, whereas the cup is saturated. Here
the reflection of the hot cup on the panel in the background is obvious. After calculating the fused image,
the bar pattern as well as the printing on the cup show up within the same image. In the example of
Figure 4 it makes no difference whether the ratio or the difference of the apparent temperatures is
calculated. We prefer the difference as the temperature difference gives a magnitude of the difference in
the two bands and this may be usable to quantify spectral features.
Two more experimental images are presented in Figure 5 and 6. The first image (Figure 5) shows a car
that was parked in front of the institute. Whereas the two single band images showed nothing special, the
fused image reveals writing on the rear window. The image also gives the impression that the license
plate would be readable if the camera had a better spatial resolution. Figure 6 presents the two-band
images of a truck with running motor. The exhaust of the truck is covered behind a low emissive material.
When the image fusion is conducted, the low emissive material shows up as bright spot and is clearly
detectable. Additionally, some other spectral effects are also visible on the street and the windows.
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Fig. 4: Test image of a cup filled with hot water in front of a panel with bar targets. Presented are the two
apparent temperature calibrated original images and the fused image. The fused image shows the
difference in the apparent temperature of the two bands (upper image) and the ratio of the apparent
temperature (lower image). The original images are displayed using the same temperature range for the
two bands but with two different temperature ranges to show different details.

Fused ImageMWIR LWIR Fused ImageMWIR LWIR

Fig. 5: Car with writing on the rear window recorded with the IR Dual-Band Camera demonstrator. Presented are
the two apparent temperature calibrated original images and the fused image. The fused image shows the
difference in the apparent temperature of the two bands. The original images are displayed using the same
temperature range for both bands.

MWIR LWIR Fused ImageMWIR LWIR Fused Image

Fig. 9: Truck with running motor and low emissive material in front of the exhaust. Presented are the two apparent
temperature calibrated original images and the fused image. The fused image shows the difference in the
apparent temperature of the two bands. The original images are displayed using the same temperature range
for both bands. Note the enhanced contrast of the background perceived by an observer.
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6. SUMMARY AND CONCLUSIONS
The IR Dual-Band Camera demonstrator was built by four partners and FGAN-FOM. It collects
simultaneously infrared data in the 4 � 5 μm (MWIR) and 8 � 9 μm (long-wave infrared, LWIR) bands.
The demonstrator is based on a two-layer QWIP focal plane array with 384 x 288 x 2 detector elements
and 40 μm pitch. Images are typically acquired with a frame rate of 100 Hz at 6.8 ms integration time and
are stored as 14-bit digital data. Two optics were specially designed, first a dual field of view F/2 optics of
86 mm and 390 mm focal length, based on refractive and reflective components and second a refractive
100 mm F/2 optics.
The experimental assessment showed typical QWIP detectors with narrow bands and a low number of
defective pixels. It shows a spectral crosstalk from the MWIR into the LWIR but not vice versa. The
performance related to System Transfer Function (SiTF), Response, temporal and spatial Noise and
Modulation Transfer Function (MTF) is similar in the MWIR and the LWIR. This is advantageous for
image fusion techniques as well as for practical use, for example selecting the best band is thus not
limited by the camera performance. Altogether the IR Dual-Band Camera demonstrator is comparable to
the single band QWIPs and very appropriate for the analyses of dual-band techniques.
In addition to the experimental assessment of the demonstrator, image fusion techniques were presented.
These techniques have the goal to show up the differences between the two bands in order to get
new/additional information on the scene. In order to do so the bands have to be adapted somehow. For
���
������
������	�������������������������������������
�������������
������������������������
�����
ratio or subtraction reveals the differences. This method gives good results in laboratory tests and the first
measurements in real military applications showed the possibility to improve observer performance for
detection related tasks.
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