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Abstract: 
Numerous voltage waveforms have been used for the operating temperature modulation of 
chemoresistors resulting in different amounts of analyte-related information. The massive amount of 
numerical information and high level of data redundancy increases the computation cost and 
complicates the signal processing algorithm. Here, we fuse the information contents of the responses 
recorded using different temperature-modulating waveforms with an ensemble classification strategy 
for obtaining higher rates in analyte recognition. 100% classification rates were achieved in the 
classification of three different target analytes each examined at different concentrations in air by 
combining the outputs of nine base classifiers each trained individually with different feature subsets. 

Key words: gas sensor, metal oxide gas sensor, operating temperature modulation, information 
fusion, ensemble classification, gas recognition. 

Introduction 
The problem of high dimensional data in e-
noses, also referred to as “the curse of 
dimensionality” in statistical pattern recognition, 
significantly increase the complexity of the 
classification algorithm, time and memory 
requirements. Many of these features of the 
recorded patterns are irrelevant or redundant 
due to the cross-selectivity of the responses of 
the array components or the outputs of the 
virtual components of the virtual array utilized 
[1]. A simple strategy to reduce the number of 
features is to select a subset of the available 
features, feature subset selection (FSS).  

The goal in FSS is to find an optimal subset of 
features that maximizes prediction or 
classification accuracy. An exhaustive search of 
all possible subsets of features will guarantee 
that the optimal subset is found. However, this 
is computationally impractical even for a 
moderate number of features. The performance 
of different sensors and feature selection 
methods have been studied by various 
researchers in the electronic nose community 
[2-5], but the potential improvement in 

classification through feature fusion by 
ensemble-based approach [6-7] have remained 
unattended. While the feature selection seeks 
to find an optimal subset of features, the goal of 
classifier ensembles is to combine the outputs 
of diverse classifiers to achieve optimal 
accuracy. This approach generally belongs to 
the multiple classifier system which is explained 
in detail in the following section. 

 

The responses of a chemoresistor temperature-
modulated with a heating voltage waveform 
contain significant amount of information related 
to the nature of the prevailing analyte in the 
background atmosphere [8]. Different voltage 
waveforms, such as staircases, pulse trains, 
sinusoidals, and step functions have been 
applied to the microheater of these sensors 
resulting in different success levels in analyte 
recognition [9-13]. In this paper, the 
performance of an ensemble of nine classifiers, 
each trained on different feature sets produced 
from the response patterns obtained using 
different microheater waveforms, are evaluted. 

 

DOI 10.5162/IMCS2012/P1.0.18

IMCS 2012 – The 14th International Meeting on Chemical Sensors 798



Multiple
Combini
accuracy
in mach
names, 
classifier
and clas
can ge
results t
[14]. In s
classifica
different 
performa
depends
classifier
known a
that if e
errors, th
an appro

Fig. 1. T

There a
an ense
most stra
learning 
variation
classifier
or differ
network 
base cla
different 
classifier
the ori
techniqu

The third
for class
thermally
individua
different 
feature 
selection
subset o
selection
generate
random 
built by r
These 

e Classifier S
ng multiple c
y is one of th
ine learning
such as m

r ensemble,
ssifier fusion.
enerate mor
than each o
such system
ation task ca

classifier
ance. Howev
s on the 
rs make er
as classifier

each classifie
hen the tota
opriate comb

The structure 

re three gen
emble of cla
aightforward
algorithms 

ns of the 
rs. For exam
rent topolog
classifiers c

assifiers. An
training se

rs. Such set
ginal traini

ues [15-16]. 

d approach, 
sification of t
y modulated
al classifiers
feature subs
selection. 

n algorithms
of features, th
n is to find d
e accurate an
subspace m
randomly ch
feature sub

Systems 
classifiers to
he foremost 
. It is known

multiple clas
, committee
. Multiple cla
re accurate
of the indivi
ms, as show
an be solved
rs, leading
ver, the ense

assumption
rors on diff
r diversity. T
er makes d
l errors can 

bination of the

of a multiple c

neral approa
assifiers, am
 approach is
for the bas
parameters 

mple, differen
ies of a se
can be utiliz
nother appro
ets to build 
ts are often
ng set b

which is us
the respons

d gas sensor
s with data 
sets, or so-c
While trad

s seek to fi
he goal of en
different feat
nd diverse cl

method [6] th
oosing the fe
bsets are 

achieve hig
research are

n under vario
ssifier system
 of classifie

assifier syste
e classificat
dual classifi
n in Fig. 1, 
d by integrat
g to be
emble approa
n that sin
erent sampl
The intuition
ifferent spec
be reduced

ese classifie

classifier syste

aches to cre
mong which 
s using differ
e classifiers

of the ba
nt initial weig
eries of neu
zed as differ
oach, is us
different ba

 obtained fr
y re-sampl

sed in this w
e patterns o
r, is to train 
that consist

called ensem
ditional feat
ind an optim
nsemble feat
ture subsets
lassifiers. In 
his ensemble
eature subse
generated 

gher 
eas 
ous 
ms, 
ers, 
ems 
tion 
iers 
the 
ting 

etter 
ach 

ngle 
les, 

n is 
cific 
 by 
rs. 

em. 

eate 
the 

rent 
s or 
ase 
ghts 
ural 
rent 
sing 
ase 
rom 
ling 

work 
of a 
the 
t of 

mble 
ture 
mal 
ture 
s to 
the 

e is 
ets. 

by 

ran
dim
ea
cla
by 
fea
su
se
cla

Re
us
co
fuz
rul

Me
Th
ch
eth
me
[13
co
tem
air
ex
wa
diff
res
co
he
s) 
at 
diff
Sim
diff
co
diff
ea
ex
the
cla
res
are
wa
res
flow
cla
are
the

Co
We
co
mo
ap
wa
an
tec
ap
tec

ndomly sele
mensional fe
ch feature 

assifier. Fina
an appropr

ature select
bset of featu
lection is to 

assifiers to ac

egardless of 
ed, the diver
mbination te
zzy integral, 
e, behavior k

ethods and 
he sensor us
emoresistor 
hanol and 1-
ethod is sim
3], but no s
mpensation 
mperature a
r which is th
periments 

aveforms are
fferent am
sponses rec
ncentration l
ating voltage
is given in F
a constant b

fferent amp
milarly, resp
fferent pulse
nfigurations.

fferent pulse
ch target 
amples are 
ese 18 respo
assification t
sponses, sim
e transforme
avelet coeffi
sponse fea
wchart is g

assification re
e compared 
e classifiers o

onclusion 
e showed th
ntent of the
odulated ga
plication of

aveforms, ca
 ensemble

chnique is 
plicability 

chniques. 

ecting m fe
eature space
subset is fe
lly, all class

riate combin
tion seeks 
ures, the goa

combine th
chieve optim

the base cla
rse classifiers
chnique suc
Markov chai
knowledge s

Results  
sed is a gen
and the an

-butanol. The
ilar to those 
specific cont

measure 
nd humidity 
e backgroun
carried o

e simple rec
plitude and

corded for m
levels using 
e pulses of c

Fig. 2. The he
biasing of 2 V
plitudes are
onses were 
e durations 

As a resu
ed responses
analyte at 
given in Fig

onses were u
ask describe

milar to those
ed by db2 w
cients are 

atures. The
given in Fig
esults of the
with those 

output by ma

hat the unco
e responses

as sensor, 
f different 
n more effici

e classificat
cost effecti
for variou

eatures from
e (
ed into an i
ifiers are ag
ation rule. W
to find an

al of ensembl
he outputs o

mal accuracy.

assification 
rs are then fu
ch as voting 
ins, Dempste

space, etc. [1

neric tin oxid
nalytes are m
e response r
 reported in 
trol was imp
was taken 
level of the

nd atmosphe
out. The 
ctangular pu
d duration

methanol at 
6 different a

constant dur
eater is norm
V, when the 
e applied (
 generated 

of similar 
lt a collectio
s were ava

any conce
g. 3. Only nin
utilized in the
ed. The sing
e presented 

wavelet. The 
used as th
e data pr
g. 4. In Tab
e individual c
obtained fro

ajority voting

correlated inf
s of a tem
generated 
microheater 
iently be ext
tion strateg
ive and of 
us gas 

m the n-
. Then, 

individual 
ggregated 
While the 
 optimal 
le feature 

of diverse 
 

algorithm 
used by a 
methods, 
er-Shafer 
6].   

de-based 
methanol, 
recording 
[12] and 

posed or 
on the 

e ambient 
ere in the 

voltage 
lses with 

ns. The 
different 

amplitude 
ration (40 
mally kept 
pulses of 
(Fig. 2). 
for three 

general 
on of 18 
ilable for 
entration; 
ne out of 
e analyte 
gle pulse 
in Fig. 3, 
obtained 
e set of 
rocessing 
ble-1 the 
classifiers 
om fusing 
. 

formation 
mperature 

with the 
voltage 

racted by 
gy. The 

general 
analyses 

DOI 10.5162/IMCS2012/P1.0.18

IMCS 2012 – The 14th International Meeting on Chemical Sensors 799



  

 
Fig. 2. One of the three heating voltage pulse trains (dotted line) used for the thermal modulation of the gas 

sensor along with the responses recorded for methanol at different concentrations in the 100 to 2000 ppm range 
in air. The inset indicates the way the sensor was connected to the response recording system.  

   

 
Fig. 3: (a,b and c) Three example microheater voltage waveforms are given along with their respective sensor 
responses. All the responses shown are related to methanol at different concentrations in the 100 to 2000 ppm 
range in air. 

 

Tab. 1: The classification results of nine different base classifiers, each operating individually on the feature 
subsets extracted from the responses related to a specific microheater pulse, and the result of their fusion by the 
ensemble of all classifiers obtained by majority voting. 

 Base classifiers 

Classifier # MLP 
1 

MLP 
2 

MLP 
3 

MLP 
4 

MLP 
5 

MLP 
6 

MLP 
7 

MLP 
8 

MLP 
9 

Fusion

Accuracy % 98.5 92.3 90.8 96.9 93.8 93.8 95.4 96.9 92.3 100 
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 Fig. 4: The flowchart of the data processing carried out on the recorded responses of a sensor temperature 
modulated with nine different microheater voltage pulses. The goal is to discriminate between methanol, ethanol 
and 1-butanol. 
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