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Abstract:

Numerous voltage waveforms have been used for the operating temperature modulation of
chemoresistors resulting in different amounts of analyte-related information. The massive amount of
numerical information and high level of data redundancy increases the computation cost and
complicates the signal processing algorithm. Here, we fuse the information contents of the responses
recorded using different temperature-modulating waveforms with an ensemble classification strategy
for obtaining higher rates in analyte recognition. 100% classification rates were achieved in the
classification of three different target analytes each examined at different concentrations in air by
combining the outputs of nine base classifiers each trained individually with different feature subsets.
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Introduction

The problem of high dimensional data in e-
noses, also referred to as “the curse of
dimensionality” in statistical pattern recognition,
significantly increase the complexity of the
classification algorithm, time and memory
requirements. Many of these features of the
recorded patterns are irrelevant or redundant
due to the cross-selectivity of the responses of
the array components or the outputs of the
virtual components of the virtual array utilized
[1]. A simple strategy to reduce the number of
features is to select a subset of the available
features, feature subset selection (FSS).

The goal in FSS is to find an optimal subset of
features that maximizes prediction or
classification accuracy. An exhaustive search of
all possible subsets of features will guarantee
that the optimal subset is found. However, this
is computationally impractical even for a
moderate number of features. The performance
of different sensors and feature selection
methods have been studied by various
researchers in the electronic nose community
[2-5], but the potential improvement in
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classification through feature fusion by
ensemble-based approach [6-7] have remained
unattended. While the feature selection seeks
to find an optimal subset of features, the goal of
classifier ensembles is to combine the outputs
of diverse classifiers to achieve optimal
accuracy. This approach generally belongs to
the multiple classifier system which is explained
in detail in the following section.

The responses of a chemoresistor temperature-
modulated with a heating voltage waveform
contain significant amount of information related
to the nature of the prevailing analyte in the
background atmosphere [8]. Different voltage
waveforms, such as staircases, pulse trains,
sinusoidals, and step functions have been
applied to the microheater of these sensors
resulting in different success levels in analyte
recognition [9-13]. In this paper, the
performance of an ensemble of nine classifiers,
each trained on different feature sets produced
from the response patterns obtained using
different microheater waveforms, are evaluted.
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Multiple Classifier Systems

Combining multiple classifiers to achieve higher
accuracy is one of the foremost research areas
in machine learning. It is known under various
names, such as multiple classifier systems,
classifier ensemble, committee of classifiers,
and classifier fusion. Multiple classifier systems
can generate more accurate classification
results than each of the individual classifiers
[14]. In such systems, as shown in Fig. 1, the
classification task can be solved by integrating
different  classifiers, leading to better
performance. However, the ensemble approach
depends on the assumption that single
classifiers make errors on different samples,
known as classifier diversity. The intuition is
that if each classifier makes different specific
errors, then the total errors can be reduced by
an appropriate combination of these classifiers.
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Fig. 1. The structure of a multiple classifier system.

There are three general approaches to create
an ensemble of classifiers, among which the
most straightforward approach is using different
learning algorithms for the base classifiers or
variations of the parameters of the base
classifiers. For example, different initial weights
or different topologies of a series of neural
network classifiers can be utilized as different
base classifiers. Another approach, is using
different training sets to build different base
classifiers. Such sets are often obtained from
the original training set by re-sampling
techniques [15-16].

The third approach, which is used in this work
for classification of the response patterns of a
thermally modulated gas sensor, is to train the
individual classifiers with data that consist of
different feature subsets, or so-called ensemble
feature selection. While traditional feature
selection algorithms seek to find an optimal
subset of features, the goal of ensemble feature
selection is to find different feature subsets to
generate accurate and diverse classifiers. In the
random subspace method [6] this ensemble is
built by randomly choosing the feature subsets.
These feature subsets are generated by
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randomly selecting m features from the n-

dimensional feature space (™M < n) . Then,
each feature subset is fed into an individual
classifier. Finally, all classifiers are aggregated
by an appropriate combination rule. While the
feature selection seeks to find an optimal
subset of features, the goal of ensemble feature
selection is to combine the outputs of diverse
classifiers to achieve optimal accuracy.

Regardless of the base classification algorithm
used, the diverse classifiers are then fused by a
combination technique such as voting methods,
fuzzy integral, Markov chains, Dempster-Shafer
rule, behavior knowledge space, etc. [16].

Methods and Results

The sensor used is a generic tin oxide-based
chemoresistor and the analytes are methanol,
ethanol and 1-butanol. The response recording
method is similar to those reported in [12] and
[13], but no specific control was imposed or
compensation measure was taken on the
temperature and humidity level of the ambient
air which is the background atmosphere in the
experiments carried out. The voltage
waveforms are simple rectangular pulses with
different amplitude and durations. The
responses recorded for methanol at different
concentration levels using 6 different amplitude
heating voltage pulses of constant duration (40
s) is given in Fig. 2. The heater is normally kept
at a constant biasing of 2 V, when the pulses of
different amplitudes are applied (Fig. 2).
Similarly, responses were generated for three
different pulse durations of similar general
configurations. As a result a collection of 18
different pulsed responses were available for
each target analyte at any concentration;
examples are given in Fig. 3. Only nine out of
these 18 responses were utilized in the analyte
classification task described. The single pulse
responses, similar to those presented in Fig. 3,
are transformed by db2 wavelet. The obtained
wavelet coefficients are used as the set of
response features. The data processing
flowchart is given in Fig. 4. In Table-1 the
classification results of the individual classifiers
are compared with those obtained from fusing
the classifiers output by majority voting.

Conclusion

We showed that the uncorrelated information
content of the responses of a temperature
modulated gas sensor, generated with the
application of different microheater voltage
waveforms, can more efficiently be extracted by
an ensemble classification strategy. The
technique is cost effective and of general
applicability for various gas analyses
techniques.
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Fig. 2. One of the three heating voltage pulse trains (dotted line) used for the thermal modulation of the gas
sensor along with the responses recorded for methanol at different concentrations in the 100 to 2000 ppm range
in air. The inset indicates the way the sensor was connected to the response recording system.
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Fig. 3: (a,b and c) Three example microheater voltage waveforms are given along with their respective sensor

responses. All the responses shown are related to methanol at different concentrations in the 100 to 2000 ppm
range in air.

Tab. 1: The classification results of nine different base classifiers, each operating individually on the feature
subsets extracted from the responses related to a specific microheater pulse, and the result of their fusion by the
ensemble of all classifiers obtained by majority voting.

Base classifiers

Classifier# | MLP | MLP | MLP | MLP | MLP | MLP | MLP | MLP | MLP | Fusion
1 2 3 4 5 6 7 8 9
Accuracy % | 985 | 92.3 | 90.8 | 96.9 | 93.8 | 93.8 | 954 | 96.9 | 92.3 100
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Fig. 4: The flowchart of the data processing carried out on the recorded responses of a sensor temperature
modulated with nine different microheater voltage pulses. The goal is to discriminate between methanol, ethanol
and 1-butanol.

[9] F. Hossein-Babaei, S.M. Hosseini-Golgoo,
Analyzing the Responses of a Thermally
Modulated Gas Sensor Using a Linear System
Identification Technique for Gas Diagnosis, |IEEE
Sens. J. 8, 1837-1847 (2008);
doi:10.1109/JSEN.2008.2006260

A. Heilig, N. Barsan, U. Weimar, M. Schweizer-
Berberich, J. Gardner, W. Gopel, Gas

References

[1] R. Gutierrez-Osuna, Pattern Analysis for Machine
Olfaction: A Review, I[EEE Sens. J. 2, 189-202
(2002); doi: 10.1109/JSEN.2002.800688

[2] M. Aleixandre, |. Sayago, M. C. Horrillo, M. J.
Fernandez, L. Ares, M. Garcia, C. P. Santos, J.
Gutearres, Analysis of Neural Networks and

[10]

Analysis of Feature Selection with Genetic
Algorithm to Discriminate Among Pollutant Gas,
Sens. Actuator B-Chem. 103, 122-128 (2004);
doi: j.snb.2004.04.044

Identification by Modulating Temperatures of
Snoy-Based Thick Film Sensors, Sens. Actuator
B-Chem 43, 45-51 (1997); doi:10.1016/S0925-
4005(97)00096-8

[3] E. Phaisangittisagul, H. T. Nagle, Sensor [11] A Amini, S. M. Hosseini Golgoo, Rapid
Selection for Machine Olfaction Based on R_ecognltlon of _Alr Born Combustible Molecules
Transient Feature Extraction, IEEE Trans. with an Operating Temperature-Modulated Gas
Instrum. Meas 57, 369-378 (2008); doi: Sensor, Sens. Lett. In print (2012);doi:

(4]

(5]

10.1109/TIM.2007.910117

J. W. Gardner, P. Boilot, E. L. Hines, Enhancing
Electronic Nose Performance by Sensor
Selection Using a New Integer-Based Genetic
Algorithm Approach, Sens. Actuator B-Chem.
106, 114-121 (2005); doi:
10.1016/j.snb.2004.05.043

T. Eklov, P. Martensson, |. Lundstrom, Selection
of Variables for Interpreting Multivariate Gas
Sensor Data, Anal. Chim. Acta 381, 221-232
(1999); doi: 10.1016/S0003-2670(98)00739-9

[12]

[13]

F. Hossein-Babaei, S.M. Hosseini-Golgoo, A.
Amini, Extracting Discriminative Information from
the Padé-Z-Transformed Responses of a
Temperature-Modulated Chemoresistive Sensor
for Gas Recognition, Sens. Actuator B-Chem.
142, 19-27 (2009); doi:10.1016/j.snb.2009.07.039

F. Hossein-Babaei, A. Amini, A Breakthrough in
Gas Diagnosis with a Temperature-Modulated
Generic Metal Oxide Gas Sensor, Sens. Actuator
B-Chem. In print (2012);
doi:10.1016/j.snb.2012.02.082

[6] T. K. Ho, IEEE Trans. Pattern Anal. Mach. Intel, ~ [14] R. Polikar, Ensemble Based Systems in Decision
The Random Subspace Method for Constructing Making, [EEE Circuits Syst. Mag. 6, 21-45
Decision Forests 20, 832-844 (1998); doi: (2006); doi: 10.1109/MCAS.2006.1688199
10.1109/34.709601 [15] L. Breiman, Bagging Predictors, Machine

[7] M. A. Bagheri, G. A. Montazer, Ensemble Learning 24,  123-140  (1996);  doi:

(8]

Classifier Strategy Based on Transient Feature
Fusion in Electronic Nose, 14th ISOEN, New
York City, USA (2011); doi: 10.1063/1.3626375

A.P. Lee, B.J. Reedy, Temperature modulation in
semiconductor gas sensing, Sens. Actuator B-
Chem. 60, 35-42 (1999); doi: 10.1016/S0925-
4005(99)00241-5

[16]

IMCS 2012 — The 14th International Meeting on Chemical Sensors

10.1007/BF00058655

Y. Freund and R. E. Schapire, A Decision-
Theoretic Generalization of On-Line Learning and
an Application to Boosting, J. Comput. Syst. Sci.
55, 119-139 (1997); doi: 10.1007/3-540-59119-
2_166

801





