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Abstract: 
Perovskite oxide has been reported as a potential gas sensing material in addition to commonly used 
binary oxide. Strontium titanate ferrite (SrTi0.6Fe0.4O3) thin film sensors were fabricated using modified 
sol-gel spin coating technique and annealed at different annealing temperatures. An anomalous n- to 
p-type transition of oxygen sensing response was observed as annealing temperature increased. A 
typical p-type sensing response was observed for sensors annealed at temperature of 500 °C and 
higher. On the other hand, sensors annealed below 450 °C showed an unusual n-type sensing 
response, which has never been reported. The n-type sensing response was caused by the 
amorphous phases in the thin film annealed at low annealing temperature, as revealed by X-ray 
diffraction (XRD), tunneling electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). 
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Introduction 
Gas sensor technology is one of the most 
important key technologies of the future 
development with a constantly increasing 
number of applications in environmental 
monitoring, pollution control, healthcare, 
automobiles, hydrogen economy and technical 
processes control. Since the discovery of 
semiconductor metal oxide gas sensors in 
1962, most of the research works on were 
focused on relatively simple binary oxides such 
as SnO2, ZnO and TiO2.  

Additionally, perovskite oxides with ABO3 
structure was also reported to be a promising 
gas sensing material due to its attractive 
properties such as excellent gas sensitivity, 
mixed ionic-electronic conductivity, great doping 
flexibility, ability to accommodate large amount 
of dopants and defects, high melting and 
decomposition temperature [1,2]. Particularly, 
strontium titanate ferrite (STFx) appeared as a 
potential candidate for oxygen sensor. In 
strontium titanate ferrite solid solution system, 
trivalent iron ion (Fe3+) substitutes for the 
quadrivalent titanium ion (Ti4+) without restoring 
the electroneutrality in the cation site. Due to 
the difference in their preferential oxidation 
states, oxygen vacancies are formed to 
maintain charge balance in the system [3]. This 

inherent non-stoichiometry makes STFx highly 
sensitive to oxygen partial pressure.  

In this study, STF40 (x = 0.4) thin films were 
deposited using modified sol-gel spin-coating 
technique. To our knowledge, the n- to p-type 
transition of sensing response was observed for 
the first time for STFx sol-gel thin film sensors. 
The underlying mechanism for this 
phenomenon was investigated with the help of 
various characterization techniques. 

Experimental Procedures 
For the preparation of STF40 sol-gel precursor, 
titanium butoxide (Aldrich, 97%) was first 
thoroughly mixed with acetylacetone (Merck, 
99%) with a mole ratio of 1:4. Then, iron nitrate 
(Merck, >99%) was dissolved in 2-
methoxyethanol (Sigma-Aldrich, 99.8%) and 
acetylacetone with a mole ratio of 1:20:6. Next, 
the Ti + Fe precursor was mixed together and 
homogenized under continuous stirring. On the 
other hand, the strontium acetate 
(NacalaiTesque) was dissolved in glacial acetic 
acid and deionized water with a mole ratio of 
1:15:90. Finally, the dissolved Sr precursor 
solution was dripped into the Ti + Fe precursor 
with continuous stirring using a magnetic stirrer. 
The viscosity and the molarity of the final sol 
were adjusted using 2-methoxyethanol. The 
STF40 sol was spun onto the Si/SiO2 wafer 
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substrate with gold interdigitated electrodes at 
3000 rpm for 30 seconds. The soft bake 
temperatures were set as 150°C and 300°C for 
5 minutes each. Then, the spin-coating cycle 
was repeated for five times to obtain multiple-
layer thin films sensors. The final films were 
annealed at different temperatures for one hour 
under air ambient with flow rate of 1 slm using 
Lindberd tube furnace. 

The XRD patterns were recorded at room 
temperature using Siemens D5005 X-ray 
diffractometer with Cu K-alpha radiation (λ = 
1.5406 Å) operating at 40 kV and 40 mA. The 
surface morphologies of the thin films were 
observed using FESEM (Jeol-6340F). The 
microstructure of the thin films was analyzed 
using a TEM (JEOL 2010) operating at 200 
kV.XPS measurement was carried out using a 
Kratos AXIS spectrometer with monochromatic 
Al Kα (225W, 15.0 kV with kinetic energy of 
1486.6eV) X-ray radiation. The calibration of 
the binding energy scale was performed with 
the ubiquitous carbon contamination peak 
located at 285 eV. The oxygen sensing 
properties were characterized using a custom-
designed gas sensing characterization system. 

Results and Discussion 
The structural development in sol-gel derived 
STF40 thin films with different annealing 
temperatures was studied using XRD and their 
XRD patterns are illustrated in Fig. 1. For as-
deposited film and film annealed at 400 °C, no 
significant phase was observed and the films 
were still in amorphous phase. With increasing 
of the annealing temperature, the cubic 
perovskite phase was slowly developed. One 
can observe that the relative intensity of STF40 
cubic perovskite peaks increased with 
annealing temperature, indicating better 
crystallinity of the thin film. 

 
Fig. 1. XRD patterns of the STF40 thin films 
annealed at different temperatures for 1h. 

The oxygen gas sensing property of the STF40 
thin film sensors was characterized at different 
operating temperatures by measuring the 
changes in electrical resistance upon exposure 
of 20% oxygen gas and the results are plotted 
in Fig. 2. For sensors annealed at 400 and 450 
°C, an increase in the electrical resistance was 
observed upon oxygen gas exposure, as shown 
in Fig. 2(a). At low operating temperatures (150 
to 300 °C), the bulk equilibration with oxygen is 
kinetically hindered and is a very slow process. 
Hence, the oxygen sensing property is mainly 
contributed from the surface oxygen 
chemisorption which causes formation of 
oxygen adsorbates on the grain surface. In the 
case of n-type semiconductor metal oxide, 
oxygen chemisorption extracts electrons from 
the bulk and builds a space-charge region on 
the grain surface [4]. Formation of space-
charge region causes a decrease in the major 
carriers that lead to an increase of electrical 
resistance. On the other hand, sensors 
annealed at ≥ 550 °C exhibited a normal p-type 
sensing response manifested by a decrease in 
resistance upon oxygen gas exposure, as 
shown in Fig. 2(b), which is in good agreement 
with reported works on STFx sensors [5, 6]. 

 
Fig. 2. Gas sensing responses to 20% oxygen in 
nitrogenat different operating temperatures for 
STF40 sol-gel thin film sensors annealed at different 
temperatures: (a) n-type and (b) p-type sensing 
response. 
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As a summary, lower annealing temperature (≤ 
450 °C) is insufficient to completely form the p-
type cubic perovskite phase for STF40 sol-gel 
thin film. The films mainly contain the 
amorphous phases such as TiO2 and Fe2O3 
which formed by the decomposition of the sol-
gel precursor. Unfortunately, due to the 
asymmetry and broadening of the Fe2p XPS 
spectra, we could not obtain any significant 
information about structure change as 
annealing temperature increased. Hence, the n-
type sensing response observed in the STF40 
film sensor annealed at temperature below 450 
°C was resulted from these n-type amorphous 
phases. At higher annealing temperatures, the 
STF40 film crystallized well into p-type cubic 
perovskite phase and the sensors showed 
normal p-type sensing response. 

Conclusion 
STF40 sensors were deposited using a 
modified sol-gel spin-coating method and 
annealed at 400 to 750 °C for 1 hour. According 
to the XRD study, the peaks intensity and 
hence the crystallinity of the cubic perovskite 
phase increased with annealing temperature. 
Oxygen sensing results showed n- to p-type 
oxygen sensing response transition as the 
annealing temperature increased. In contrast to 
typical p-type sensing response for STF40 
sensors annealed at 500 °C and higher 
temperatures, an anomalous n-type sensing 
response was observed for sensors annealed 
at 400 °C and 450 °C. This phenomenon was 
further investigated using TEM and XPS. TEM 
observation revealed that the film annealed at 
450 °C was still in amorphous phase with poor 
crystallization while the film annealed at 650 °C 
showed polycrystalline structure. In addition, 
the existence of amorphous TiO2 phase and 
lattice oxygen in the films was also witnessed 
using XPS. Hence, the n-type sensing response 
was attributed to the contribution of amorphous 
TiO2 and Fe2O3 phase in the films annealed at 
lower temperature. 
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