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Abstract: 
We investigated the feature selection problem for the application of all-against-all classification of a set 
of 20 chemicals using metal oxide sensors and linear support vector machines. We defined a set of 
possible features in terms of identity of sensors and sampling times and tested all possible 
combinations of such features. We found that performance is clearly increased by feature selection 
compared to previous results [1] but that, contradictory to naïve expectation, using the maximal 
number of different sensors and all available data points for each sensor does not necessarily yield 
the best results. Similarly, the standard method of taking one data point from all sensors also 
underperforms. 
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Introduction 
For any chemical sensing application, an 
important choice to make is which types of 
sensors, and, if using an array of sensors, how 
many sensors of any particular type to use. 
Further choices apply to how to sample data 
from the sensors and how to pre-process the 
collected raw data. It is well-known in machine 
learning that this process of feature selection 
(FS) is very important for the eventual success 
of the overall classification (recognition) system. 

Intuitively, we would expect that using more 
sensors can only improve performance, as long 
as the sensors are not fully redundant 
(identical) or fully uncorrelated with the problem 
(equivalent to noise). Here, we systematically 
investigate this feature selection problem for 
fully classifying a set of 20 chemicals (Tab. 1) 
using metal oxide sensors (MOS) [2] and linear 
support vector machines (SVMs) [3] in a 
“wrapper” approach. 

The set of analytes consists of five chemicals 
each from four chemical groups: alcohols, 
aldehydes, esters and ketones. They were 
chosen from a larger set of chemicals used in a 
comparative study between metal oxide 
sensors and biological sensors [4]. To detect 
the individual chemicals we used a 12-sensor 

array, comprising six standard, doped tin 
dioxide (SNO2), five novel zeolite-coated, doped 
chromium titanium oxide (CTO) sensors [5] and 
one non coated CTO sensor. Every subset of 
the 12 sensors was sampled at six 
representative time points (Fig. 1) which 
comprised the set of all possible features. 
Feature selection thus consisted of choosing a 
subset of sensors and data points, each choice 
constituting a particular “feature set”. 

We tested the performance of all possible 
257,985 such feature sets in all-against-all 
classification of the data set using a standard 
linear SVM algorithm [6] in 10-fold cross-
validation. 
Tab. 1: Analytes used and their chemical classes 

1-Pentanol Acetaldehyde 
1-Hexanol Butanal 
Z2-hexen-1-ol Hexanal 
1-Octen-3-ol E2-hexenal A

lc
oh

ol
s 

3-Methylbutanol A
ld

eh
yd

es
 

Furfural 
Ethylhexanoate Acetone 
Ethylacetate 2-butanone 
Isopentylacetate 2-pentanone 
Methylacetate 2-heptanone Es

te
rs

 

Ethylbutyrate 

K
et

on
es

 

2,3-butanedione 
 

IMCS 2012 – The 14th International Meeting on Chemical Sensors 810

DOI 10.5162/IMCS2012/P1.0.21



 
Fig. 1: Example of response from the FOX Enose 
fitted with the twelve-sensor array. Vertical lines mark 
the available sampling times. 

Results 
Figure 2 shows the performance of feature sets 
of different size constraint, e.g. 2,3 is 2 data 
points each from 3 sensors. We note that the 
best performing feature sets do much better 
than previously reported classifiers based on 
this sensor array [1] and that the best 
performance is not achieved with the naïvely 
expected maximal sensor- and data-use (12 
sensors, 6 data points, top line of Fig. 2). 

To control for selection biases, we chose a 
group of well-performing sensors (column 
“top10”) and repeated cross-validation for this 
group (“top10 rerun”). The superior 
performance of smaller feature sets over the 
(6,12) choice remains intact. Note, however, 
that for smaller feature sets, classification 
success depends critically on the choice of the 
used feature sets from the pool of all potential 
sets of a given size. This is illustrated by the 
much lower worst performance (see column 
“worst” and the low outliers in the left column). 

The data is presented ordered by the number of 
possible feature sets for each given size 
constraint, ranging from a single (6,12) feature 
set on the top to 18480 possible (3,6) feature 
sets at the bottom. The prevalence of excellent 
“best”, “top 10” and “top 10 rerun” performance 
at the bottom of the graph illustrates that size 
constraints with many different feature set 
choices are more likely to have well-performing 
sets, even though this is not an absolute rule, 
see e.g. the 2970 (1,4) feature sets that are 
much less successful than the 20 (3,12) sets. 

In order to identify possible explanations for the 
improved performance for some feature sets 
over others we compared the classification 
performance for each set with the quality of 
clustering given this feature choice (Fig. 3). For 
this purpose we defined the quality of clustering 

as the quotient dinter/dintra of the average 
Euclidean distance between average class 
vectors, 

 
Fig. 2: Fractional prediction accuracy of 10-fold 
cross-validation using linear SVMs for all possible 
sub-samplings of 6 time points and the 12 available 
sensors. The box plots show the median and 25% 
and 75% quantiles, the estimated overall range 
(whiskers) and identified outliers (red crosses). The 
numerical columns give the number of time points 
and the number of sensors used followed by the 
resulting number of such combinations that was 
tested. The colored columns give the best observed 
performance, worst performance, performance of the 
“top 10” group of feature choices and the 
performance of this group in a repeated 10-fold 
cross-validation. Note the highly non-linear color 
code. 
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and the average Euclidean distance of vectors 
within a class to the average class vector, 
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Here, kix ,


 denotes the kth measurement of 

chemical (class) i, 
i

.  denotes taking the 

average over the index i and 
2

.  denotes the 
Euclidean norm. While the data in Fig. 3 shows 
a noticeable positive correlation, particularly for 
the extremes of very low clustering quality and 
very low performance (lower left), the clustering 
quality apparently does not fully explain the 
classification results. The overall correlation 
coefficient between classification performance 
and clustering quality as defined here is positive 
but only 0.205. 

 
Fig. 3: Classification performance of linear SVMs for 
all possible feature choices in 10-fold cross-validation 
plotted against the clustering quality (ratio of inter-
class to average intra-class Euclidean distance, see 
main text). A clear correlation is noticeable, in 
particular the absence of points with low clustering 
quality and high performance (upper left corner) or 
low performance and high clustering quality (lower 
right corner). 

Discussion 
The results illustrated in Fig. 2 suggest that it 
may be beneficial to design a sensor array 
specifically for each envisioned application 
domain and if doing so, that a few well-chosen 
sensors and data sampling times may 
outperform using the maximal array and many 
data points. However, it is worth noting that 
choosing the correct sensors and data sampling 
times is critical. For example, the median 
performance of (3,6) feature set (0.985) is 
actually worse than the performance of the 
single (6,12) choice. This implies that taking just 

an arbitrary (3,6) feature set would likely not 
improve the overall success. 

We notice that a large number of classification 
results are almost optimal and some of the 
differences we base our conclusions on amount 
to discrepancies of a single error in classifying 
200 measurements of chemicals. This indicates 
that the array we used is capable of this quite 
challenging classification problem. Future work 
will need to extend the results to even more 
challenging applications including lower or 
multiple concentrations, and measurements 
taken over an extended period of time. 

As pointed out above, intuitively we would have 
expected that classification performance can 
only increase when additional data (information) 
is added. In the worst case one would have 
expected unchanged performance if the 
additional data was not useful. Here, however 
we saw that adding additional data can 
decrease the accuracy of classification. The 
likely explanation of this phenomenon is over-
fitting. The additional data may provide 
additional information for the training data, but 
this can lead to too specific classifiers that may 
not generalize as well to new testing data as 
“less informed” ones. This trade-off between 
optimal classification on the training data and 
optimal ability to generalize to new test data, 
the so-called over-fitting problem, is a classic 
topic in machine learning. Future work will focus 
on unraveling what the optimal solutions are for 
given practical problems and the degree to 
which these are generalisable within or beyond 
a problem set. 

The work reported here was conducted with a 
specific classification method, i.e. a linear 
support vector machine. One could argue that 
the observed phenomenon of better 
classification with smaller feature sets may be 
specific to this particular method. While we 
cannot fully exclude this possibility, the effects 
of over-fitting are known to affect all 
approaches to classification. While the details 
may differ for other classification methods, the 
principal results are likely to apply to a variety of 
such methods. 

Conclusion 
We set out to systematically assess the 
question of feature selection for arrays of MO 
sensors in a classification task, using standard 
machine learning methods. We found that 
feature selection can improve classification 
performance and that the best-performing 
feature sets are not necessarily the naively 
expected ones. 
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In future work we plan to analyze in depth why 
particular combinations of sensors are very 
successful and whether this translates to 
classification methods other than linear support 
vector machines.  
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