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Abstract 
An in-plane flexible sensor platform for BTX detection was developed using low-cost patterning 
techniques and foil-based optical components. The platform was produced  by a combination of laser 
patterning, inkjet printing and capillary filling. Key optical components such as lightguides, optical 
cladding layers and metallic interconnections were realized on low cost substrates such as paper and 
PET 

The sensing mechanism is based on the change in fluorescence spectra of a reporter dye, supported 
over a porous matrix. Detection limits down to 1 ppm for benzene, toluene and xylene have been 
measured. Response times down to a few seconds were observed for different gas concentrations. 
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Introduction  
Benzene, toluene and xylenes (BTX) are 
important air pollutants which show a high 
potential hazard to human health even at trace 
amounts, especially benzene due to its 
carcinogenicity. Although a number of sensors, 
capable of BTX detection, have been 
demonstrated [1–5] they are sensitive to other 
volatile organic compounds (VOCs) and are 
poor at identifying chemically and structurally 
similar BTX. The only way to detect these 
compounds separately is to utilize gas 
chromatography [6] or a selective 
preconcentration technique [7]. Thus 
development of a selective and highly sensitive 
sensor for BTX detection is still an important 
and a challenging task. 

Optochemical sensors involving a diverse 
scheme of sensing strategies have been 
employed in detecting presence and 
concentration of a wide range of analytes and 
have applications as diverse as medical and 
biochemical fields to security systems and food-

packaging industry1. They are used for gas 
detection, either using direct or reagent 
mediated methods. Direct methods require the 
measurement of an intrinsic optical property of 
the analyte, like absorption or luminescence. In 
reagent-mediated or indirect methods, the 
change in the optical response of an 
intermediate agent, usually an analyte-sensitive 
dye molecule is used to monitor analyte 
concentration. 

Fluorescence detection is one of the prominent 
optical techniques used for optochemical 
sensors. Fluorescence sensing can provide 
ultra-high sensitivity, fast response times, the 
capability of continuous measurements and 
requires a minimal amount of analyte. 

Besides the physical or chemical process 
involved in the sensor transduction, the success 
of a sensor depends on the nature of the 
physical platform on which it is based[8]. 
Consideration of the transduction mechanism 
dictates the design of the optical platform, in 
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order to obtain high efficiency in light delivery 
and collection. 

A novel in-plane flexible sensor concept is 
proposed using foil-based optical technology 
and low-cost patterning techniques. The sensor 
makes use of the changes in the fluorescent 
spectra by exciplex formation of 
dibenzoylmethanoborondifluoride (DBMBF2) 
and BTX. The principle of transduction of this 
dye renders the platform selective for the 
targeted gases, with a fast and reversible 
response. 

The complete sensor system consists of 
lightguides, excitation light source, 
photodetectors, sensing layer and coupling 
structures, that in a whole are integrated in a 
flexible electronic platform.   

BTX Sensing principle 
When a dye molecule absorbs light, its 
electronic properties change dramatically, and 
may participate in reactions not observed in 
non-excited state[9]. A particular case is the 
formation of complexes with molecules of 
different structure, called exciplexes.  

The formation of these exciplexes modifies  the 
fluorescence emission of the uncomplexed dye 
in two ways: by quenching or reduction of the 
original fluorescence and by the appearance of 
a new fluorescence band at a longer 
wavelength. 

The wavelength of this new fluorescence band 
is dependent on the molecule involved in the 
complex with the dye[10], a factor that can be 
used to identify and detect analytes. 
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Figure 1: The fluorescence spectrum of a developed 
material (black). Changes in fluorescence spectrum 
of the material in the presence of saturated vapors of 
benzene (red), toluene (green), o-xylene (dark blue) 
and p-xylene (blue) 

Detection of monoaromatics with DBMBF2 
The formation of exciplexes between DBMBF2 
and alkylbenzeneshas been studied thoroughly 
[10–12] and sensors materials based on the 
fluorescence of this complex have been 
suggested[13] 

Thepositions of the exciplex fluorescence 
maxima [14]depend on the ionization potential 
of the donor (BTX molecule) and electron 
affinity of the acceptor (DBMBF2). 

Figure 1shows the changes in the fluorescence 
spectra of the DBMBF2dye upon exposure to 
saturated BTX vapors. 

Sensitivity of DBMBF2 in a porous and 
polymeric matrix 
To evaluate the fluorescent response of the 
dye, it was deposited over a hydrophobic 
porous support. The intensity of the emission of 
the exciplexes of the different gases was 
monitored. Figure 2 shows the fluorescent 
changes for different concentrations of toluene. 

Figure 2: Toluene response curve of DBMBF2 
supported over porous matrix 

Similar measurements were carried out for 
benzene and isomers of xylene, and the lowest 
detected concentrations and corresponding 
response times for these concentrations are 
summarized in Table 1. 
Table 1: Lowest detected concentrations(LDC) and 
response time of DBMBF2 over porous support 

Gas LDC / ppm Response time 
/s 

Benzene 16,6* 300 
Toluene 2 47 

m-Xylene 2* 67 

o-Xylene 0,8* 64 

p-Xylene 0,5* 67 
*confirmed by gas chromatography 
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Two foil based, flexible optical platforms were 
developed and tested.Integration of the different 
optical components and the patterning of its 
layer was successfully accomplished 

A sensing layer, comprising of DBMBF2 
dispersed in a composite matrix, will be 
deposited over the lightguides core in the next 
stage of the project. Fluorescent enhancement 
metal layers will be studied to improve 
sensitivity of the sensor. 
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