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Abstract: 
Colloidal solutions of Au and TiO2 nanoparticles are prepared and used as nanocrystal inks for the 
fabrication of porous thin films to be used as optical gas sensor. The introduction of Au nanoparticles 
in the TiO2 matrix affects the reactions mechanism improving the sensing process, moreover the Au 
Surface Plasmon Resonance peak can be used for the realization of a gas sensor with tunable 
sensitivity. The effect of thermal treatment, Au dimension and concentration is analyzed in order to 
tailor films microstructure and their sensing properties. The nanocomposites showed reversible 
change in optical absorption/reflection when exposed to reducing gasses (H2, CO) at 300 °C operative 
temperature or when exposed to volatile organic compounds (alcohols) at room temperature. 
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Introduction 
Gas species recognition through fully optical 
devices is currently a raising trend over the 
well-established conductometric approach, as it 
opens new possibilities especially for in situ 
recognition of flammable and/or toxic species 
such as CO or volatile organic compounds 
(VOC). Noble metal nanoparticles (NPs) 
dispersed inside a porous semiconductive 
matrix constitute an effective design for a gas 
sensor’s active material, thanks to their catalytic 
and localized surface plasmon resonance 
(LSPR) properties. In fact, metal NPs can show 
catalytic properties and therefore modify the 
chemical interactions between the oxide 
surface and the target analyte, improving the 
sensing process [1]. Moreover, if the metal NPs 
show LSPR peak in the visible range (like Au), 
the nanocomposites can be used as selective 
optical gas sensor [2]. In fact, the variation of 
the dielectric constant around Au will differ for 
different gas species; moreover, specific 
chemical reactions can occur at the surface of 
Au NPs; these events will affect the LSPR 
bands in different ways leading to a diverse 
variation of the optical properties at different 
wavelengths. We have synthesized TiO2 porous 
film containing Au NPs with different size using 
colloidal techniques. The films have been 
tested as optical gas sensor for the recognition 
of CO and H2 or for volatile organic compounds 

(VOC). The effect of Au concentration and size 
on gas sensing properties has been studied. 

Experimental 
Au NPs of about 13 nm in diameter (hereafter 
called Au13) were synthesized in water with the 
Turkevich method as described in [3]. Poly(N-
vinylpyrrolidone) (PVP)-capped Au NPs of 
about 3 nm in size (hereafter called Au3) were 
synthesized by reducing gold ions in methanol 
with sodium borohydride adapting a previously 
published procedure [4]. TiO2anatase colloids of 
about 4 nm in diameter were synthesized 
according to the procedure presented by 
Antonello et al. [5] Films with different Au NPs 
concentration (up to 5% molar) and size were 
deposited by spin coating a mixture of Au and 
anatase colloids on SiO2 glass substrates and 
annealed up to 400 °C in air; details are 
reported elsewhere [3].Optical absorption 
measurements have been carried out with a 
Jasco V-570 spectrophotometer. Transmission 
Electron Microscopy (TEM) analysis of 
nanoparticles deposited on carbon-coated 
copper grids were performed with a Philips 
CM20 STEM. The nanostructured films 
annealed at 400 °C have been subjected to 
optical gas sensing tests in transmission at 
operative temperatures (OT) between 250 °C 
and 350 °C and they were exposed to H2 and 
CO with different concentrations ranging from 
10 ppm to 1% v/v. a description of the 
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minimum are almost the same, and only the 
intensity of the response is rather different, 
being higher in the sample containing 4% Au.  

 

 
Fig. 2. a) Absorption spectra of a TiO2-Au13 film 
annealed at 400 °C measured in air (black line) and 
during exposure to 1% v/v CO (grey line) at OT=300 
°C. The inset shows the OAC plot of the same film 
after exposure to 1% v/v CO (black line) and H2 (grey 
line) at OT=300 °C. b) OAC of films containing 
different concentration of Au3 andAu13 NPs after 
exposure to 1% v/v H2 at 300 °C OT. c) Dynamic 
response for the same TiO2-Au films when exposed 
to one air-1%H2-air cycle at 300°C OT. 

These results highlight the role of Au NPs as 
optical probes, since Au free sample did not 
give any detectable results, while Au containing 
samples showed a response intensity 
proportional to Au amount. Similar results are 
observed also for CO exposure. As far as 
samples containing Au3 NPs are concerned, 
they show as well a wavelength dependent 
behavior, with the OAC plot slightly blue shifted 
as expected from the LSPR peak position, but 
the intensity of the response is smaller (see 
Figure 2b), as a consequence of the difference 
in the LSPR peak intensity between Au13 and 
Au3 NPs discussed previously. This effect was 
expected as well, but the introduction of small 
Au colloids was intended to be beneficial to the 
reaction kinetics, thanks to the catalytic 
properties of small Au clusters. 

 
Fig. 3. a) Dynamic response of a TiO2-Au13 sample 
annealed at 400 °C, tested at 585 nm and 300 °C 
OT, during exposure to different H2 concentrations 
expressed volume percent. b) Sensitivity plot for two 
TiO2-Au13 samples with 5% Au NPs with different 
thickness.  

Time resolved measurements have been 
performed at 300 °C OT at the wavelengths 
corresponding to absolute maximum and 
minimum of the OAC curves. A clear and 
reversible response has been recognized in all 
the tested samples, with very fast transient 
times as shown in Figure 2c. The response 
times (calculated as the times needed to reach 
90% of the optical variation following the target 
gas insertion in the test cell) for all samples are 
in the 10-30 seconds range for both hydrogen 
and CO, while the recovery times (times 
needed to recover 90% of the baseline level) 
are slightly longer, about 50-60 seconds for 
hydrogen and 120-150 seconds for CO. We did 
not observe any improvement in the transient 
times when TiO2 films were loaded with Au3 
NPs, so a greater catalytic effect of small Au 
NPs with respect to bigger ones towards 
reducing gases adsorption and/or 
decomposition was not observed in this study. 
Tests at different target gas concentrations 
show that the intensity of the response is 
proportional to the gas concentration, as can be 
clearly seen on Figure 3a; these films can be 
easily detect 100 ppm H2 even at very low 
thickness (see Figure 3b). In addition, the 
baseline level is fully recovered in all the tests, 
resulting in great reproducibility of the sensing 
results. 

VOC sensor.  

Samples annealed at 100 °C have been tested 
as VOC sensors at room temperature. The 
annealing at 100°C was performed to remove 
residual solvents and stabilize the films, and 
this thermal treatment is compatible with 
several temperature sensitive substrates like 
polymers, SPR devices and so on. The 
synthesis of crystalline colloids enables to lower 
the post processing temperature of the 
deposited films, allowing to widen the range of 
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