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Abstract 
Results on light-enhanced NO2 sensing utilizing ordered mesoporous In2O3 are presented and 
interpreted by means of a new sensing model for ordered mesoporous indium oxide (In2O3) [1]. This 
model aims to explain the drop in electronic resistance of n-type semiconducting In2O3 under UV light 
exposure as well as the light-enhanced sensing properties to oxidizing gases. Compared to the 
conventional double Schottky model [2] the dominating factor for the resistance change is a change of 
oxygen vacancy donor states in the bulk phase due to photoreduction [3]. Comparison of conductivity 
measurements with varying oxygen partial pressure for ordered mesoporous and non-structured 
material shows an accumulative behavior in the case of the mesoporous material which can be related 
to faster photo reduction caused by the nanostructure. IR measurements reveal a donor level of 0.18 
eV below the conduction band attributed to oxygen vacancies. The unique properties resulting from 
the structure allow low-temperature sensing of NO2; especially the recovery times are significantly 
shorter for the mesoporous material. 
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Introduction 
Cubic In2O3 is considered as an important 
material for the fabrication of sensitive layers for 
resistive gas sensors. Since it is particularly 
sensitive to oxidizing gases such as O3 or NO2 
[4] but nearly insensitive to reducing gases (e.g. 
CO, NH3, hydrocarbons) at low temperatures 
(100 – 150 °C) [5] it bears an inherent low 
cross-sensitivity to reducing gases. However, a 
low operating temperature for sensing O3 or 
NO2 results in long recovery times of the sensor 
signal. It is known, though, that illumination of 
the sensing layer with UV light (400 nm) [6] 
reduces recovery times by light-induced 
desorption of adsorbates. However, in non-
structured ('bulk') In2O3 oxygen diffusion in the 
crystal lattice is slow [7] and therefore 
predominant over short-term effects caused by 
surface adsorbates. 

To overcome this disadvantage ordered 
mesoporous In2O3 with high surface-to-volume 

ratio and nanometer–sized structure is used. 
Owing to the thin pore walls of the 
nanostructured material and their high 
accessibility for both gas molecules and UV 
light, oxygen diffusion in the crystal lattice does 
not play a major role any longer, and light-
enhanced sensing even at room temperature is 
possible as will be shown for the example of 
NO2. 

Experimental 
Mesoporous In2O3 was synthesized by structure 
replication (nanocasting) utilizing mesoporous 
KIT-6 silica as a rigid matrix [1] in two 
consecutive steps. In the first step ordered 
mesoporous silica is synthesized by utilization 
of supramolecular aggregates of amphiphiles 
as a structure director (soft template). In the 
second step the pores of the rigid silica matrix 
are filled with an indium oxide precursor 
(In(NO3)3) which is converted by thermal 
treatment to indium oxide. The silica matrix is 
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