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Abstract

In this work, we pick up the ISE research on automation of intelligent inte-
grated systems design and apply and adapt the concept, methodology, and tool
implementation. In particular, a new platform, based on the proven machine-
learning tool ORANGE will make the work multi-platform and open-access.
We demonstrate the current status by the application to our Lab-on-Spoon (LoS)
multi-sensory system and corresponding data. The creation of a an efficient
Support-Vector-Machine (SVM)-based hierarchical classification architecture
and options of automated feature selection (AFS) are investigated in the exper-
iments. An improved in two cases to 100% classification accuracy with regard
to the previous flat approach was achieved.

Keywords : System Design Automation, Intelligent Systems, Machine Learn-
ing, Support Vector Machine, Impedance Spectroscopy, Lab-on-Spoon

1 Introduction

The ongoing technological advance from sensor, electronics to methods and
algorithms allows the realization of more and more capable systems in many
fields, such as, e.g., distributed intelligence, ambient intelligence, ambient as-
sisted living (AAL), automation, and general smart environment applications
i.e., smart-kitchen activities. Lab on Spoon [1], with rich potential in assisted
living, medical application, as well as food manufacturing process and food
analysis related applications, is a system that provides versatile sensory context
for smart-kitchen scenarios to determine food ingredient quantity and quality,
i.e., identify the type of ingredient as well as its quality, in particular, detect and
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quantify existence of the specific substances for contamination detection. Thus,
to achieve these abilities, the efficient realization of a multi-sensor measure-
ment system is pursued from standard and customized sensors and electronics,
sophisticated data acquisition and embedded processor, and, in particular, effec-
tive computation intelligent processing for pattern recognition tasks. The multi-
sensor information thus available can be exploited by efficient application of
specific fusion and classification. Therefore, designing such a system imposes
significant effort on a designer and expectation of expertise. With the research
goals to alleviate these requirements, speed-up design, and potentially improve
solution quality, an automation of intelligent system design, based on prior ISE
research [2] [3] [4], as an enhancement of expert-centered design, is pursued in
this work with a focus on multi-sensor integrated sensory system, such as, e.g.,
the LoS [1] as well as DeCaDrive system for driver monitoring [5]. Based on
the prior ISE research work, the general methodology is picked-up and imple-
mented in a new framework based on the ORANGE [6] system. In contrast to
previous tool implementations, e.g., proprietary QuickCog [3] or GENESIS [4],
ORANGE is a multi-platform open-access tool, so that our work can be of gen-
eral validity and allow reuse in research. ORANGE system, has been extended
for sensor system interfacing and gives access to advanced methods for visual-
ization, analysis, and classification of the LoS data. The aspired methodology
and framework will allow the rapid and optimized design of intelligent systems
tailored to the application. This includes also the leanness of the aspired system
by including according constraints in the optimization. LoS applications are
various and for each new or enlarged task, e.g., increase of ingredients or sub-
stances to discern, a new recognition systems has to be conceived. The partial
automation of this task will be studied in our work for a set of typical examples,
regarding, e.g., automated feature selection or nested training of hierarchical
classifiers for decision level fusion techniques. The organization of this paper is
as follows. Section II introduces the architecture of the multi-sensor intelligent
system and describes the implementation in the Lab on Spoon case study. Fur-
ther, it introduces a hierarchical SVM classification topology with automated
parameter search techniques. Data acquisition, experiments and results, and
discussion will be provided in Section III.
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2 Automated Multi-Sensor System Design

Our goals are to contribute to the automation of intelligent sensor systems de-
sign for potentially complex recognition system composed of various methods
and algorithms [7]. For this aim, based on well established as well as newly
emerged and evolved signal processing and computational intelligence, we have
developed a proposed concept, methodology, and a framework for automated
design of intelligent multi-sensor systems [2] [3] [4]. The standard architec-
ture blocks of automated intelligent multi-sensor systems related to recognition
applications is illustrated in Fig. 1. The highlighted box indicates the focus of
research in this paper, which is described in the following subsections.

Figure 1: The concept of an automated intelligent multi-sensor system design.

2.1 Multi-Sensor Intelligent Lab-on-Spoon System

The system is based on the novel concept of combining sensors for visual and
impedance spectroscopy with an embedded processor and communications to
achieve an autonomous, well discerning system. The outcome of multi-sensor
solution will be exploited in later advanced computational intelligence tech-
niques, e.g, the automated selection of features and, in particular, advanced
classification methods based on automated approach. The current LoS pro-
totype includes a ceramic substrate pt10k temperature sensor with a custom
calibrated analog circuit, the MCS3AS true color sensor and corresponding
transimpedance 4-channel amplifier chip, and an embedded impedance spec-
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troscopy measurement, the AD5933 network analyzer chip with gold-plated
electrodes applied. For low-impedance measurements, typically below 1kΩ,
extended by an analog front-end (AFE). The programmable amplification of
the AD5933 input stage has to be set with regard to the aspired impedance
measuring range. An Arduino Pro mini microcontroller module is in charge of
sensors reading and measurement routines as well as data transferring to host
computer. The analog sensors are measured using integrated 10-bit resolution
ADC module of Arduino’s microcontroller. The LoS’s hardware block diagram
as well as the current LoS prototype printed in a spoon shape package from our
MakerBot 3D printer are shown in Fig. 2a and 2b.
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(a) Hardware block diagram of Lab-on-Spoon. (b) Lab-on-Spoon first prototype.

Figure 2: The concept and the implementation of Lab on Spoon

2.2 Automated Feature Selection

Further, we focus on automatically reducing the dimension of feature space in
the early stage of computation. An Automated Feature Selection [8] is already
available in the QuickCog and other systems and will be added to ORANGE in
the aspired research together with advanced optimization techniques. AFS leads
to more lean, in some cases better performing decision systems. However, the
SVM does not depend on this to achieve excellent recognition ability, but it can
still benefit due to reduced system complexity, resource, and energy consump-
tion. In particular, the spectroscopic methods, as e.g., impedance spectroscopy
can benefit from application-specific selection, because the measurement time
as well as the effort will be substantially reduced, knowing the key frequencies
to inspect for a certain task. So, AFS can also be understood for LoS as a data
analysis and knowledge acquisition step applied to data for full-scale measure-
ments to achieve lean and fast measurements in following applications.
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2.3 Hierarchical SVM Classification

We have developed a multi-level architecture in order to enhance classifying
performance of full spectrum data processing advancing from conventional flat
SVM classification [9]. The purpose of the desired architecture is to obtain and
achieve a more balanced weighting of sensory channels by fusing on the deci-
sion level. Thus, each individual sensory channel is assigned to an independent
first-level SVM classifier in the hierarchy. Thus, local optimizations are solved
in each sensory channel giving dedicated optimal parameters that fit to a particu-
lar sensory channel. In training, in the first-level stage, for each sensory channel
an SVM with optimum parameters is generated. These generated SVM classi-
fiers estimate probabilistic values for the different classes using an embedded
Platt’s posterior probabilities [10] estimator from LIBSVM [11] library return-
ing a class probabilistic vector, denoted as class-P vector in the following. The
dimension of this class-P vector depends on the number of classes as well as
the implemented multi-class classification approach. In addition, SVM is an in-
trinsic binary classifier and the combination of multiple binary SVM classifiers
is generally employed to achieve multi-class classification problems. Consider-
ing the one-against-one (pairwise) approach [11] , the total number of pairwise
binary SVM classifier is derived from k(k − 1)/2. The estimation of pairwise
of k class probabilities of input data x from i th and j th classes is formulated as
eq.1.

pi = P(y = i | x), i = 1, ..., k rij ≈ P(y = i | y = ior j ,x)

rij ≈
1

1 + eAf̂+B ′ (1)

where f̂ is the decision value of trained SVM classifier model, A and B are
estimated from training data by minimizing the negative log-likelihood func-
tion. The f̂ , A and B arguments are computed in a particular sensory channel
of training procedure. These are also used to produce class-P vectors of test
data for prediction procedures. All class-P vectors are concatenated in a global
class-P vector that corresponds a probabilistic patterns of classes of all sensory
channels. In the top level stage, the final SVM classifier performs the final class
output determination based on class probabilistic information obtained from the
previous level stage. The proposed approach is illustrated in Fig.3.
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Figure 3: Hierarchical SVM Classification

2.4 System Implementation in ORANGE

ORANGE is a machine learning and data mining suite for data analysis through
Python scripting and visual programming. We have been developing various
additional functions, features, and effective methods of computational intelli-
gence extended from standard available modules in ORANGE. The LoS Serial
Port Interface module is a Python-based and consisted of a LoS device data
communication function via serial port interface for sensor reading and mea-
surement procedures as well as importing and transforming the acquired data
for post processing in ORANGE system. The LoS Feature Selector module
is the data selector that recognize the acquired multi-sensor data in LoS for-
mat. The feature selector selects data corresponded LoS’s sensor type domain
e.g. temperature, color spectrum, impedance. An ORANGE’s inclusive C type
SVM classifier with a RBF kernel function, implemented from the library LIB-
SVM in ORANGE, is chosen for all classification operators in this work. In
the hierarchical SVM Classification implementation Python Script widgets are
used, because the desired algorithm is not implemented by standard widgets and
modules. The optimal SVM parameters are obtained with an automated param-
eter search by using embedded LIBSVM’s procedures internally implemented
with the Grid-search method and Cross-validation techniques.

3 Experiments and Results
The data sets used in this work are obtained from six different ISE’s experi-
ments in food ingredients scenarios of recently experiments demonstrated an
early prototype of LoS. The data sets are: Soy data set consists of four liquid
cooking ingredients, i.e., soy sauce, vinegar, and tab water, Beer data set con-
sists of four different brands of beer, Oil data set of three kinds of cooking oil,
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Wine data set consists of seven kinds of wine, Used oil data set was extracted
from fresh and used cooking oil, and Glycol in Wine consists of pure wine and
wine contaminated with Glycol. These data sets are named as Soy, Beer, Wine,
Oil, Used Oil and Glycol in Wine repectively. 30 measurement repetitions have
been set as the standard for each substance or ingredient. LoS data output of
a single measurement represents an instance of data vector consisting of one
temperature value, three RGB color values, and 512 complex impedance val-
ues including magnitude and phase which amounts to 1028 entries stored in
double precision of ORANGE’s data format. The transimpedance of the LoS
color sensor is set to 500 kΩ. The AD 5933 acquires impedance spectrum in
the frequency range of 10kHz-100kHz. The measurement proceeds in three
phases, measuring the temperature, followed by accumulative color registration
of 50 samples concluding with the impedance spectroscopy measurement. Cur-
rently, we consider the temperature only as a context information and constrain
multi-sensor processing and classification to color and impedance only. Every
data set is separated by a hold-out random data splitting, 50% for training and
50% for testing. The experiments were divided into three steps. In the first
step, we demonstrate the conventional flat SVM classification method where
the complete sensor data was employed in a single SVM classifier computa-
tion. In the second step, instead of computing with the complete data and all
features, we applied AFS function employing QuickCog to reduce the input
vector space of the flat SVM. In the third step, to prove the hierarchical classifi-
cation concept, three SVM are individually trained from color, magnitude, and
phase channel outputting class distribution probability vectors. The final class
output is computed from the concatenated class distribution probability vector
from three sensor channels that are given to the final SVM classifier. The au-
tomated parameters search procedure is enabled in all employed SVM finding
an optimal value for parameter C, the penalty parameter for the error term, and
γ, the kernel parameter, with searching range of 1-512 for C and 0-8.00 for
γ. The implemented hierarchical SVM classification in ORANGE is shown in
Fig. 4. Table 2 compares the results from conventional (Flat SVM) of both full
feature and AFS feature data, and hierarchical (H-SVM) method, classification
accuracy computed from testing data set are given here. The generated SVM
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parameters from automated parameters search function for all experiments and
data sets are given in table 1. The performance of Flat SVM gives perfect clas-
sification except in two cases.The proposed H-SVM classification returns 100%
accuracy in all cases. Number of support vectors (no.SVs) extracted from classi-
fication models indicate the computation load and results demand for embedded
system. The example of feature map plots of the Wine data set scattered by us-
ing a multidimensional scaling technique in Fig. 5 applied with data from three
different cases: full feature, AFS features and global class-P vector. The plot of
global class-P vector, the color represents different classes, are well separated
with substantial boundary and realized capabilities of the proposed approach.

Table 1: Generated SVM parameters from automated parameters search function
Experiment

&
Feature

Parameter
Data set

Soy Beer Wine Oil Used Oil
Glycol
in wine

Flat SVM
Full

C

γ

2
0.03125

128
0.125

32
0.125

512
0.125

512
0.5

512
2

Flat SVM
AFS

C

γ

512
0.03125

512
0

512
0.03125

8
0

128
2

512
0.5

H-SVM

CColor

γColor

512
0

32
0

128
8

512
0.5

128
2

512
0.5

CMag.

γMag.

32
0.5

128,
0

512,
0.125

512
0.125

512
2

128
0.5

CPhase

γPhase

128
0

512
0.03125

512
0

8
0

8
2

512
0.03125

CFinal

γFinal

0.5
0.125

2
0.125

512
0

8
2

512
2

8
0.125

Table 2: Experimental results
Data set Flat SVM (Full features) Flat SVM with AFS features H-SVM

CA. no.SVs CA. no.SVs CA. no.SVs
Soy 100 31 100 15 100 70
Beer 98.33 60 98.33 36 100 112
Wine 99.05 94 98.10 15 100 203
Oil 100 45 100 17 100 60

Used Oil 100 41 100 7 100 62
Glycol in Wine 100 20 100 2 100 45

118

DOI 10.5162/AHMT2014/4.3



Figure 4: The proposed hierarchical SVM classification in ORANGE

Figure 5: Feature map plot of the Wine data set employing distance preserving dimensionality
reduction and interactive visualization

4 Conclusion

In our work, we presented ongoing research on an merging methodology and
framework for the automated design of intelligent integrated systems. A strong
focus, in contrast to other existing work, is on multi-sensor issues and imple-
mentation constraints, e.g., power, speed, size, robustness etc., which are soft
constraints in our design optimization to achieve lean yet adaptive or self-x
integrated system solutions. In this paper, we apply the current state of our de-
sign methodology and system on ORANGE to the multi-sensor Lab-on-Spoon
demonstrator, partially automating the design of an improved, hierarchical sen-
sor signal processing and SVM-based recognition system for several task re-
lated to food processing, analysis, and safety. We could achieve with the hierar-
chical classification approach competitive and in some cases even superior re-
sults to the previously applied flat approach. In all cases, 100% recognition rate.
The price tag is an substantial increase in parameter finding and training time
as well as increased of overall support vectors. In future work, we will com-
bine AFS and related dimensionality reduction techniques with the presented
hierarchical approach to reduce the number of support vectors, and, thus, the
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overall system size or complexity and integrate the required, possibly nested or
hierarchical optimization, in our emerging tool architecture and framework.
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