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Abstract

With the rapid advance of modern micro- and nanoelectronics, devices become
more vulnerable to failure as well as to noise. The need for fault tolerant de-
vices and circuits, that can compensate degradation and failure by adaptation,
are inherently immune to noise, and compute at low-power gives new incentive
to the motivation and goals of neuromorphic computing again. In particular, the
realization of sensor signal conditioning and conversion by neural circuits coex-
isting with potentially large digital circuits on the same substrate is an attractive
field for these techniques. In our work, for the case of a selected magnetic
sensor (AMR), a spike-coded circuit employing principles from the auditory
system is advanced, that already meets several of the goals mentioned above.
Now we achieve 6.3 bit ADC with a sampling rate of 1 MHz by using Rank Or-
der Coding and a simple look-up table for decoding. The increase of resolution
and linearity as well as introduction of adaptivity will be regarded next before
considering microelectronic implementation.

1 Introduction

Sensor signal conditioning has seen many valuable approaches to solve differ-
ent problems, with conventional techniques focusing on high resolution, high
sampling rate and low power. These make use of amplitude coding which is
highly susceptible to noise and vulnerable to soft and hard errors. Even the
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reconfigurable systems with programmable features like resolution, sampling
rate etc still make use of the noisy amplitude coding. Time coded signals have
become more popular recently both in research and industry [7]. We can also
find biologically inspired time based approaches dealing with the ADC prob-
lem [6] which are robust and consume low power. These systems offer the
promise of increased robustness and reduced vulnerability to noise and device
deficiencies and defects as compared to the amplitude based systems. However
they are not yet programmable, reconfigurable or adaptive. In our work, we
exploit principles of natural neurons and peripheral nervous systems in a prag-
matic engineering way, in particular, we currently use of spiking Integrate and
Fire neurons and synapses to create inherently Self-x/Reconfigurable systems
which can then evolve into self-adaptive systems to provide higher reliability
and graceful degradation for future measurement systems. The target of our
work is to achieve an adaptive signal conditioning system which will be bench-
marked for instance with our 3D magnetic sensor for localization project [8].

In our previous work [16], we have shown that programmable Integrate and
Fire neurons can be used with a Wheatstone half bridge to obtain a linear time
coding, Using a full bridge this extends the approach to produce a linear redun-
dant time difference coding. We have also shown using Monte-Carlo analysis
that any deviations due to process variations can be corrected by adapting the
synaptic weights. We have shown that this code can be converted to a 1-of-
N coding by based on Jeffress model of sound localization using coincidence
detection [16]. We showed a 4 bit 1-of-N decoder using this technique. This
technique is robust because the time or shape of the spike does not matter but
it is only the presence or absence of the spike that is important. While this
technique is effective in producing robust, programmable outputs which can be
easily decoded by any microcontroller (Since only one neuron spikes per out-
put), it is possible to extract more data using place coding. In our previous
work, we introduced a basic place coding concept which reduces the area of the
4 bit 1-of-N decoder by half. In this work we will show that place coding can
be used to obtain much higher resolution compared to the same circuit using
coincidence detection technique shown in our previous work.
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2 State of the Art

Neural ADC circuits have been presented in various works from 1986 [2] [3]
[4]. These circuits analog neurons which can provide fast approximate solutions
and slower accurate solutions. While most of these circuits were able to provide
robust, reconfigurable ADCs, they were still making use of amplitude coding.
Time coded ADCs have also been presented in the last few decades. These
include rate coded approaches similar to delta-sigma converters and Spiking
neural ADCs.

There have been a few approaches in creating ADCs based on spiking neurons.
The first approach while being mostly theoretical, created a concept for SNN
ADC/DAC by making use of spike maps [13] [12]. This approach can be com-
pared to Successive Approximation Converters in traditional analog electronics.
The second work is from [6] in which the authors have created an extremely en-
ergy efficient 8bit ADC which works similar to a dual slope ADC. While these
ADCs solve different problems, they do not make use of the advantages of spik-
ing neural networks. They are not reconfigurable or programmable, The latter
requires matched capacitors to obtain accurate information. Our goal is to make
use of inherent advantages of neural networks to create a robust, programmable,
adaptive sensory systems, in particular, for leading edge technologies [1].

3 Neural Coding

In our previous work [9], we discussed about the problem of neural coding.
The main types of neural coding are rate coding, time coding and place coding.
The difference between these codes has been explained in [15]. In rate coding,
the information is encoded in the frequency of spike in a time window. While
this approach is effective, it is too slow. In 1991 a paper [18], showed that
it was not possible for rate coding to contain all information required for the
functioning of the visual system of a Bowfly. The alternative ”Time to first
Spike” encoding was proposed. Since then various coding schemes have been
studied by different groups to discover the codes used in nervous systems. Rank
order coding was proposed in 1998 by Thorpe and Guartis [17]. In their work,
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Figure 1: Neural Coding techniques

they describe Rank Order Coding used in cortical neurons for facial recognition
[19]. The advantage of this coding over ”Time to First Spike” codes is that
there is no need for measuring the accurate time of the spike at all. Most of
the information required can be obtained from a the order of the first spike in a
population of neurons.

This method is faster that rate coding and more robust that Time to First Spike
coding. This type of encoding can be very useful when creating robust ADCs
with unreliable components.

4 Analog VLSI Neuron

There are many different models of spiking neurons like the Integrate and Fire
model, Izhikevich model etc. The concepts proposed in our work should work
with any neural models. We make use of Integrate and Fire model based on
a neuron and synapse circuit by Indiver [11] which have been simplified for
our work. We make use of both Integrate & Fire(IF) and Leaky Integrate &
Fire neurons(LIF). M10 in Fig.2 is connected by a dotted line. This is because
it is present only in LIF circuit. The neuron and synapse circuits have been
described in our previous work [16]. We are working with austriamicrosystems
350 nm technology using Cadence 6 for our simulations.
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Figure 2: Integrate and Fire Neuron & Synapse

5 Differential Time Encoding

When we discussed about neural codes, we were focused on Rank Order Coding
to tap into its advantages. However, this code works better with an array of
sensors. This is the reason behind its application mostly in image processing.

Figure 3: Transduction Principle

In this work, we are making use of an AMR sensor AFF755b [10] from Sensitec
Gmbh. This sensor has a Wheatstone full bridge which could be considered
as two ’sensors’. The IF neuron naturally encodes the amplitude signal into
a Time-to-first-spike signal. Since the two halfs of the Wheatstone bridge act
differentially, We obtain a differential time encoding. In our previous work,
we have shown that this code is linear, we have also shown that process and
temperature deviations can be corrected by changing the weight of the neuron .
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6 Coincidence Detection & One-of-N coding

In 1948, a model was proposed for sound localization in mammals, making use
of time delay neural network [14]. The ears implied in the model 4 can be easily
replaced by our Wheatstone bridge. We are making use of the same model to
convert the differential time data into a spatial code.

The VLSI IF neuron shown in Fig.2 acts as a leaky IF when M10 is connected.
We can use this circuit to create the coincidence detection neuron by having the
Vleak voltage at 1V. The Vleak is actually creating a time based RBF function
acting on the incoming spike. For a high Vleak value (1V) the radius of RBF is
extremely small, and it becomes larger for lower Vleak values.

In our previous work [16], we were able to create a 4.5 bit (21 levels) decoder
by making use of 20 tabs(10 on each side of the ’center’) similar to Fig.4b, with
each tab detecting one step. One of the benefits of coincidence detection is that
it reduces the probability of error due to jitter since it depends on both the input
spikes.

(a) Jeffress Model of Sound localization (b) Time Delay Neural Network Circuit
with 2 delay lines

Figure 4: Coincidence Detection

7 Place and Rank Order Coding

In our coincidence detection technique, we made use of only one spike per input
value. We create place coding by creating overlapping RBF kernels. We can do
this when we reduce the Vleak voltage to 0.6V or 0.7V as shown in Fig.5 which
is similar to the Rank Order Coding shown in Fig. 1. In our current circuit, we
are using buffer chains to produce delays as shown in Fig. 4b. This is just a
temporary measure to analyse the place coding layer. We will be using neural
delays in future similar to our previous work [16].
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Figure 5: Coincidence Detection and Place Coding

We make use of Cadence Ocean scripts to run the simulations and provide the
order of the spikes. This information is fed into python to analyse the data. In
Fig.6, the rank order codes obtained are shown. The value ”rvar” models the
change in resistance of the AMR sensors in the Wheatstone bridge with regard
to a simulated magnetic field influence [10]. We have 21 output neurons in our
structure (similar to Fig.4b but symmetrically extended to 20 tabs.). The order
of the first spike of neuron is used to create the place code list shown in Fig.6
assuming that the difference in spike times cannot be less than 0.5 nanoseconds.
These results are sent for decoding.

Figure 6: Rank Order Codes
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8 Decoding

There are several ways of decoding the place codes that we obtained. We in-
troduced a rank order decoder in [9]. Such a decoder with modifications can
be used for this purpose. In this work, we initially tried to make use of another
supervised neural layer, which can be trained by a metaheuristic algorithm. Our
goal was to make use of soft codes present because of time difference, which
was not tapped by rank coding. This approach surprisingly is not yet competi-
tive with a simple look-up table.

8.1 Look-Up Table

We created a decoder by using a simple look-up table in python. We converted
the place codes shown in Fig. 6 into a base-21 code. For instance, the place code
shown for rvar = -92 Ω is ’jihgfedcbka9876543210’, rvar = -91 Ω is ’ijhgfed-
cbak9876543210’ and so on. This code is stored in a simple dictionary where a
simple reverse search would provide the results.

Figure 7: ADC characteristics

From the Fig.7 we can see that the ADC still is having a nonlinear,non-
homogeneous characteristic. Here the simulation was performed for ∆R of
-100 Ω to 100 Ω in steps of 1 Ω. This can be translated to the values of partic-
ular sensor, i.e., 15 Ω which corresponds to the 400A/m of the Sensitec AMR
sensor [10]. The central region has a lower resolution while the fringes have a
higher resolution. Currently, we are able to obtain a resolution of 6.3bits (82
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levels). In the fringes, the ADC is able to resolve to 1 Ω while it is able to
resolve only to 7 Ω in the center.

9 Conclusion

This work tried to contribute to the field of integrated sensor and measurement
systems by a new concept of sensory signal conditioning and conversion. The
goals are to achieve increased invulnerability to both device deficiencies, degra-
dation, and faults met in aggressively scaled technologies as well as common
noise, mismatch, and drift influences. This is tackled by employing concepts
from neuromorphic engineering in a pragmatic approach. To meet the goals,
we evolved a hierarchical spiking neuron architecture which transfers the sen-
sory reading into pulse domain processing, employing differential time coding,
coincidence detection, time delay structure, and rank order coding. Employ-
ing an AMR sensor as a research vehicle we modeled a Wheatstone fullbridge,
read, and converted its output, achieving a principle resolution of 6.3 bits for
1 MHz sampling rate. In the next steps of the work, we want to match the
prototype to the exact span and possibly resolution of the commercial Sensitec
AMR sensor AFF755B [10], increase resolution and linearity, and last but not
he least include redundancy and adaptivity for neural delay and other parame-
ters to achieve self-correction.
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