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Abstract

Driver assistance systems have become largely established in automotive appli-
cations, both for comfort and for safety functions. The monitoring of the driver
state and intention, in particular, the detection of fatigue or drowsiness, is a rele-
vant but not completely satisfying solved task both in consumer as well as com-
mercial vehicles to improve both vehicle and road safety. Thus, in our research,
a multi-sensor driver assistance system for this aim has been conceived in our
DeCaDrive project [1]. Here, we have advanced the system realization towards
higher flexibility, optimization as well as on-line drowsiness detection capabil-
ity by moving it to the ORANGE multi-platform open-access environment [2]
and employing Support-Vector-Machine classifier [3] on the DeCaDrive fea-
ture data. The employed methods, hierarchical SVM-based classification with
automated finding of parameters as well as suitable features, gave comparable
or even superior results with regard to previous investigations, as substantially
smaller training sets for higher generalization capability were employed. Clas-
sification rates of 99.66 % could be achieved for five persons and one hour
recorded driving data each.
Keywords: Automated intelligent system design, Impedance spectroscopy,
Drowsiness detection, Depth perception, Multi-sensor fusion, Driver assistance
systems
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1 Introduction

Nowadays the major trends of automotive applications such as electric vehi-
cles, connectivity in particular vehicle-to-vehicle communications (referred to
as V2X), (semi-)autonomous driving, etc. will lead to the future of automotive
world with human centered safe and sustainable mobility through renewable
energy and smart driving. Despite completely autonomous automated land ve-
hicles are technically possible (e.g., Google driverless car [4]) human’s active
role will not diminish but refocus on cooperative interactions by means of re-
defined/re-invented human-vehicle-interface. To realize this vision advanced
driver assistance systems (ADAS) have paved the way to the mainstream au-
tomotive applications such as parking assist, 3D surround view, lane departure
warning, traffic sign and pedestrian recognition, etc. ADAS systems with the
feature of driver drowsiness/vigilance detection have been introduced by major
automakers as active safety measures. Driver Alert from Ford Motor Com-
pany [5] and Driver Alert Control and Lane Departure Warning from Volvo [6]
are camera based lane tracking system which can detect abnormal car move-
ment associated with potential drowsy driving. Attention Assist from Daim-
ler [7] is capable of monitoring steering behavior with the aid of high resolution
steering sensor and issue visual or audible alarm if required. Fatigue Detection
System from Volkswagen [8] and Driver Monitoring System from Toyota [9]
are directly focusing on driver state in terms of head movement, facial features
and ocular measures. The performance and robustness of the above mentioned
ADAS systems are limited by sensing capability and application environment.
In our previous work − DeCaDrive, an embedded multi-sensor driver assistance
system, IR-depth, vision, vehicle data, e.g., steering wheel sensor information,
as well as biomedical information of the driver, e.g., pulse or skin impedance,
are collected and processed for drowsiness detection [1] [10]. Data has been
extracted from five test subjects with 300 minute driving sequence in a driving
simulator, which is part of the DeCaDrive set-up. Heuristic determination of the
tiredness or drowsiness levels of the drivers in that acquisition time has been car-
ried out for following supervised training. A solution based on feature selection
and a first neural classifier was engineered and encouraging results have already
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been achieved [2]. In this work, our DeCaDrive system will be optimized to-
wards higher flexibility, robustness, as well as on-line recognition capability.
The DeCaDrive system with embedded multi-sensor interface for driver state
monitoring and drowsiness detection is presented in Section 2. The system de-
sign with optimized sensor data processing flow and hierarchical SVM based
classification is addressed in Section 3. The enhanced system is validated and
evaluated by presenting the new experimental results in Section 4. Finally, the
current work is concluded with future perspectives in Section 5.

2 DeCaDrive: Multi-Sensor System for On-Line Driver State

and Drowsiness Detection

DeCaDrive system conceptually aims at both intelligent driver status monitor-
ing and intention recognition. It has been realized based on a standard PC based
driving simulation, sensing, and soft computing subsystems [1]. This comprises
a IR-depth camera (Kinect sensor) for eye finding and feature extraction, which
has been extended to an intelligent multi-sensor system incorporating sensor
signal processing as well as diversified embedded sensor interfaces, e.g., pulse
rate sensor, steering angle and related driving behavior sensors, and impedance
spectroscopy. Context by tactile sensor and pressure sensors is considered in the
next step, to avoid spurious readings of the skin resistance during absence of one
or both hands from the steering wheel. As illustrated in Fig. 1a, data links of
various embedded sensors on steering wheel are channelized to microcontroller
based digital front-end so as to establish scalable adaptive multi-sensor inter-
faces. The IR-depth camera, as a key component of the sensing subsystem is
connected to PC-based back-end directly. The sensing and soft-computing sub-
system is logically independent from the driving simulation subsystem despite
that two subsystems can be unified in embedded solution for future on-board
device in vehicle. In the current information processing architecture, given in
Fig. 1b, sensory data is collected from depth vision, steering angle, optionally
brake and throttle information, driver pulse rate, and impedance spectrum from
skin measurement, and fused on feature level. A Kinect sensor with active IR
illumination is integrated in order to reliably provide visual cues of driver in-
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cluding eye gaze estimation and blink detection. The multi-sensing interfaces
enable A/D conversion, sensory data streaming, time-based synchronization for
multiple sensors and can be adapted to different simulation scenarios such as
for passenger cars, buses or trucks. Different driving scenes for highway, city
streets, country roads, etc. can be simulated in PC-based driving simulation sub-
system. Based on the outcome of feature computation the selected data sets are
fused on the feature level to construct input vectors for pattern classification so
as to detect driver drowsiness. The classifier being used in the previous work is
built upon artificial neural network (ANN), here a multilayer perceptron (MLP),
with supervised training procedure. A straightforward improvement is the use
of renowned Support-Vector-Machine (SVM) classifiers instead on the ANN.
The framework of presented intelligent multi-sensor system is reflected by its
data processing flow as illustrated in Fig. 1b. Data sets of complementary sen-
sors are synchronized on the same time base before being conveyed to feature
computation components. In this paper, we extend the system architecture and
processing to the structure depicted in Fig. 2, which includes hierarchical clas-
sification and automated design approach. The overall concept and architecture
is not limited to cars but also targets on driver monitoring in utility vehicles,
e.g., bussed, trucks, or agricultural machines, as well as airplane pilots.

(a) DeCaDrive system (b) Data processing flow of DeCaDrive system

Figure 1: The concept and the implementation of Lab on Spoon

3 Enhancement of DeCaDrive-System Architecture

In this paper, we have advanced the system realization towards higher flexibil-
ity, optimization as well as on-line recognition capability by moving it to the
ORANGE system [2] and employing Support-Vector-Machine classifier [3] on
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the DeCaDrive data and feature level. In this approach, we aim to achieve an
effective Automated Feature Selection as well as a robust on-line classification
system.

3.1 Intelligent system design in ORANGE

Our approach is based on a multi-platform flexible and open system, with an
on-line classification capability, which is provided by the Python-based signal
processing and computation intelligent libraries as well as , ORANGE, an open
source python based machine learning software through visual programming.
Initially, we have implemented a system that jointly operated of Python script-
ing and the heuristic DeCaDrive environment operators that have been achieved
in our previous research [10]. We reuse our proprietary effective operators de-
veloped in C/C++ by using BOOST [11] for Python. The Serial Port Interface
module communicates with the DeCaDrive acquisition device using serial port
interface to control acquisition activity and import acquired data to store in OR-
ANGE’s data structure. The Feature Selector module allows user to manually
filter data in term of sensory channels, e.g., pulse rate, steering wheel angle,
Kinect features and impedance in the design process.

Figure 2: The proposed on-line DeCaDrive system

3.2 Pattern classification

The pattern classification tasks analyzes multi-sensory context from the
DeCaDrive data acquisition system to on-line determine the driver status. In
this work, the standard SVM classification technique first is employed to in-
vestigate a flat SVM classification approach based feature-level fusion together
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Figure 3: Overview of the extended DeCaDrive system with hierarchical processing

with the AFS option. In addition, our recent effective hierarchical approach
in [12] is also applied to this work as a more powerful and robust classification
technique as shown in Fig. 3. The hierarchical SVM (H-SVM) classification is
constructed of multiple SVM classifiers with soft output in the first level pro-
cessing stage, to produce class probability (class-P) vectors corresponding to the
probabilistic patterns of different classes. Each SVM classifier in the first level
stage locally and individually computes a particular sensor channel to generate
a class-P vector. The final SVM classifier, in the top level, computes the global
class-P vector, the concatenated of class-P vector from all sensor channels, to
produce the final class output. To generate an optimum SVM model, two pa-
rameters, C which controls the error penalty of non-separable data points, and
γ of the Radial Basis Function (RBF) kernel, are recommended to be appro-
priately defined with regard to the input data. The SVM optimum parameters
searching procedure is generally taken place in the training step based only on
the training data. In this work, the SVM automated parameters search option
implemented in ORANGE with grid search and cross validation techniques is
employed. SVM parameters are individually determined for each of the inves-
tigated feature channel SVMs and the top-level SVM.

4 Experiments and Results

The ORANGE project workspace of our approach with an integration of stan-
dard available ORANGE modules as well as our developed custom modules is
shown in Fig.4 for the newly proposed hierarchical approach. The data sets are
obtained from five test subjects each conducted by 60 minutes driving simu-
lation on the DeCaDrive system.Each measurement is consisted of 31 features

210

DOI 10.5162/AHMT2014/P10



(see Table 2) extracted from multiple sensor inputs including Kinect, driving
behavior, pulse rate, and IS. The driver drowsiness states are distinguished in
tree levels: alertness, drowsiness and deep drowsiness. The flat SVM classifi-
cation approach was employed with 5 different data sets of: 8 SFS&IS, 8 SFS,
without IS, Only IS, and Full feature obtained from our previous study [10].
The H-SVM classification approach was employed with the full data set as well
as 8 SFS&IS. All data set were separated into training set and testing sets by
using the hold out random sampling method with 80%:20% ratio for the flat
SVM and more stringent 50%:50% ratio for the H-SVM as well as for a second
reference run with flat SVM given in parentheses in Table 3. The parameter C
and γ of all employed SVMs were optimized from the automated parameters
search function with the searching range of 1-512 for C and 0-8.00 for γ. The
obtained values are shown in Table. 1. The experiments conducted in this work
confirmed the superiority of the SVM in both flat and hierarchical approach.
To compare to the more lenient investigations of the previous work, first flat
experiment was conducted with a larger training set. In the second, more ex-
tensive experiment, a substantially smaller training set was employed, which
gives absolutely seen slightly smaller recognition rates of 99.66 %, but the sys-
tem solution will have much higher general validity and the promise to perform
better for newly acquired ”life” data. AFS application compacted the solution
for a more lean system, but it has to be revisited, as the full set of features gives
slightly better performances, than the selection adopted from the prior work
with only 99.58%. Fig. 5 shows the feature map plot of the full data and the
hierarchical data (global class-P vector).

Figure 4: Hierarchical implementation of multi-sensor intelligent DeCaDrive system on Orange
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Table 1: a: Flat SVM parameters generated from automated parameter search function

Parameter
Data set

8 SFS & IS (50%) 8 SFS without IS Only IS Full
C

γ

no. of SVs

512 (32)
8 (8)

690 (674)

512
8

1124

8
8

1895

512
8

455

128
2

947

b: H-SVM parameters generated from automated parameter search function

Data set Parameter
Sensor Channel

Kinect Driving Behavior Pulse Rate IS Final

Full
C

γ

no. of SV

128
8

700

32
8

1004

512
2

854

512
8

356

512
8

52

8SFS&IS
C

γ

no. of SV

64
6

560

128
8

848

512
2

854

512
8

356

512
8

50

Table 2: Descriptions of the DeCaDrive data set including the selection of 8SFS data set
Feature All 8SFS Description

Kinect

1-3 1-3 Head pos. in x,y and z coordinates
4-6 - Head orientation in x,y and z coordinates
7,8 - Translat. and rot. head velocity
9 9 Eyebrow position
10,11 10 Eye lid closing freq. and duration

Driving
behavior

12,13 - Steering activity
14 - Standard deviation of steering activity
15 15 Percentage of minimum steering activity
16 - Mean of magnitude
17 - Steering speed
18 - Center of FFT-band

Pulse Sensor 18,19 18,19 HF LF ratio of pulse freq. and Pulse freq.

IS

21,22 - Mean and std. deviation
23 - Coefficient a (slope) after linear fitting
24 - Coefficient a after exponential fitting
25-27 - Coefficient a, b and c after polynomial fitting
28 - Coefficient a (slope) after linear fitting
29-31 - Coefficient a, b and c after polynomial fitting
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Table 3: Classification Result

Feature
Levenberg-

Marquardt algorithm
Flat SVM

H-SVM
[Full feature, with 8 SFS & IS]

8 SFS & IS (50%:50%) 99.70 99.79 (97.21)

[99.66, 99.58]
8 SFS 89.38 78.28

without IS 90.48 93.19
Only IS 98.70 99.16

Full 99.22 98.22

Figure 5: Feature map plot of the full data (a) and the hierarchical data of the top-level (b).
Clearly (a) shows, that the data possess a very high intrinsic dimensionality, which does not
allow a mapping to 2-D with acceptable error.

5 Conclusion

In this paper, we enhanced the work on a multi-sensor system for driver state
monitoring, denoted as DeCaDrive, by adding more powerful methods from
computational intelligence, i.e., SVMs for decision making and automation ca-
pabilities for optimum parameter as well as feature determination. Further, the
system was transferred to a new open-access multi platform environment. This
ORANGE environment was substantially enhanced and the extended methods
were implemented. The classification results of 99.66 % for the full data and
99.58% for the selected case appear to be a trifle worse than previously obtained
results, but 30% less training data was used to achieve a more robust realization.
One of the open issues in the DeCaDrive system modeling is the definition of
ground truth of probands actual alertness or drowsiness, which still has been
heuristically determined. In future work, we consider to use EEG-based meth-
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ods as in sleep research to get a better, somehow invasive, determination of the
ground truth using our emotiv kit. Another issue is a potential person depen-
dency in the classification system due to the limited number and phenotypes of
the probands, which will be overcome enlarging the database in the next steps.
Further, we have extended the architecture to on-line classification and drowsi-
ness estimation based on the established SVMs for freshly acquired data. The
current system will be demonstrated on IAA Nutzfahrzeuge 2014 in Hannover.
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