
 etc2014 - 34. European Telemetry and Test Conference 128

DOI 10.5162/etc2014/7.3

Use of source coding techniques on Ariane 5 1553 data
Didier SCHOTT

AIRBUS Defense and Space
66 route de Verneuil,

78133 Les Mureaux Cedex – France
didier.schott@astrium.eads.net

Abstract:
In ETTC 2013 we have presented the use of source coding techniques on Ariane 5 measurement data
[4]. This paper will now present the use of these techniques on 1553 data.

The paper will be in four parts. First we will present our analysis of the Ariane's 1553 data flow. In a
second step we will describe the principal existing source coding techniques and present the trade-off
we have made between these algorithms. In the third part we will compare the efficiency of the
algorithms we have selected for Ariane 5 1553 flight data. Then in the fourth part we will speak about
the further work we will do in this field.

Key words: Ariane 5, Telemetry, Source Coding, 1553.

1. Introduction
The data rate for Ariane 5 main telemetry
system is historically limited to 1 Mbit/s. Within
the framework of a CNES Launcher R&T
project we have explored several tracks in order
to increase the volume of data available in the
telemetry link. This paper will present one of
these studies: the use of source coding
techniques on 1553 data.

2. Source coding for Ariane 5

2.1 Ariane 5 telemetry system
The telemetry system is not only used during
validation phases (qualification flights), but also
for “Commercial” flights. The system acquires
the information of about 600 analogic sensors
and 230 status, and spies the two avionic 1553
functional buses. It also manages an on-board
memory which is used to record data for later
transmission, for example when the launcher is
not in the line of sight of a ground station.

The data are multiplexed by a “Central
Telemetry Unit” and sent to ground in a CCSDS
frame format structure.

The telemetry system is the only link with the
launcher we have! Its function is to give
information to the ground, in real-time and for
post flight exploitation, about:

 The launcher behavior,

 The mechanical / thermal /...
environment of the flight,

 Potential Anomalies and their
localization,

 The trajectory, to predict payload orbits.

2.2 Source Coding Need
In the beginning of the flight the propulsion
phase in the atmosphere generates a lot of
vibration effects, meaning high volume of data
to be transmitted to ground.

As the distance grows this data rate has to be
reduced in order to guaranty the link budget. In
some phases the launcher is not in visibility of
the ground stations, the data are recorded to be
transmitted later.

We see there the potential advantages of
Source Coding:

 Increasing the quantity of data to be
transmitted in the limited rate,

 Ameliorating the link budget by
reducing the telemetry data rate,

 Limit the on-board memory size and
speed up the restitution of recorded
information.

2.3 Source coding main Requirements
The quality of the functional 1553 data is
essential. All source coding techniques which

 etc2014 - 34. European Telemetry and Test Conference 129

DOI 10.5162/etc2014/7.3

deteriorate data (“lossy” techniques) are
excluded.

 Req 1: lossless algorithms

The coded data will have to be transmitted in
autonomous packets (the content of a packet
shall not depend of information in a previous
packet). They shall contain all information
mandatory to build the original data and their
time-tags, with the same accuracy than non-
coded parameters.

 Req 2: autonomous packets

 Req 3: same accuracy for time-tagging

3. Lossless source coding techniques

3.1 Main techniques
The main principles of lossless coding are:

 Dictionary coding: the principle is to
replace a symbol or a group of symbols
by a reference in a data structure (the
dictionary)

o Lempel-Ziv algorithms (LZ77 /
LZ78 / LZW / LZSS ...).

 Entropic coding: each symbol is
replaced by a variable length code.
This code depends on the probability of
the symbol in the data set (most
frequent symbols gets shorter codes
than less frequent ones)

o Golomb / Rice / CCSDS [2][3],

o Shanon Fano / Huffman /
Arithmetic encoding.

These algorithms shall be non-adaptive (fixed
dictionary or probability table), adaptive (the
dictionary or table is built during coding) or half
adaptive (two pass algorithm, first to build the
dictionary, second to encode).

 Other: the redundancy in the message
is eliminated by other means:

o “Standard” RLE (the sequence
‘AAAAAAF’ is replaced by ‘6AF’)

o 1553 specific algorithms [1]:

 zero tracking (the “0000” value
is coded by 1 bit),

 differential encoding
(unchanged data from a
message to the next is coded
with 1 bit),

 adapted RLE (n 16 bits
unchanged words W in a
message are coded with n and

W or with added bits indicating
the position of the n W words).

3.2 Data Analysis
Information theory permits to evaluate the
quantity of information sent by a source.

If pi is the probability of appearance of the
message i, the mean quantity of information (or
Entropy) of the source is given by the relation:

i
ii ppH)log(

A low entropy figure means that the source
sends a lot of redundant information. We
calculate the entropy with the data of Ariane
L549 flight (1/10/2009):

6

7

8

9

10

11

12

0 1 2 3 4 5

En
tr
op

y
Va

lu
e

Flight phases

16 bits symbols

Entropy

Mean Entropy

Fig. 1: entropy with 16 bits symbols

Globally the figures are rather high at the
beginning of the flight (phase 1) but diminish in
the next phases. It shall be easier to code the
data in the last phase.

In our analysis we realize that some 16 bits
figures appear more frequently than others:

Fig. 2: frequency of some 16 bits values in the
messages

The « 0000 » value appears very frequently in
the messages (~37 % of the data words !).

Then we estimate how data evoluate in the
messages:

 etc2014 - 34. European Telemetry and Test Conference 130

DOI 10.5162/etc2014/7.3

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

0 -> 20 20 -> 40 40 -> 60 60 -> 80 80 -> 100

%
 o

f m
es

sa
ge

s

% of unchanged Data

Data evolution in a message

Fig. 3: proportion of unchanged data in each
message (comparison of word n+1 in a message
with word n)

For about 86 % of the messages, the data do
evolve in each message.

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

0 -> 20 20 -> 40 40 -> 60 60 -> 80 80 -> 100

%
 o

f m
es

sa
ge

s)

% of unchanged data

Data evolution from one occurence of a message to the
next one

Fig. 4: proportion of unchanged data from one
message to the next (comparison of each word of a
message at t with corresponding words of the same
message at t+dt)

For 40 percent of the 1553 messages, 80 to
100 % of the data don’t evolve from an
occurrence of a message to the next one.

4. Algorithm selection and description – first
step
The results shown in figures 2 and 4 are very
interesting. We decide in a first step to test
algorithms based on 0 value detection, and
evolutions in messages.

Two of the three algorithms described in [1] are
clearly well adapted to this need: Zero Tracking
and Differential Encoding.

The RLE encoding is not adapted to our need,
due to the low proportion of unchanged data
shown in figure 3.

4.1 Zero Tracking Encoding [1]
Depending on the message length, 1 to 2 words
are created at the beginning of the coded
message. The content of these words indicate
the position of the “0000” in the message.

In the example hereafter, the added word is
CBD7. The position of the “0000” values is
given by each bit of this word (ZT column):

Word
Count
(Hex)

Input
Data
(Hex)

ZT Encoded
Data
(Hex)

0 0000 1 CBD7
1 0000 1 FFFF
2 FFFF 0 0059
3 0059 0 AC9F
4 0000 1 0486
5 AC9F 0 F5A9
6 0000 1
7 0000 1
8 0000 1
9 0000 1
A 0486 0
B 0000 1
C F5A9 0
D 0000 1
E 0000 1
F 0000 1

Table 1: Zero tracking encoding example

1 indicates that the corresponding word equals
“0000”.

The other values follow the added word in their
appearance order.

4.2 Differential Encoding [1]
As in previous algorithm 1 to 2 words are added
at the beginning of the coded message. The
content of these words indicate the position of
the unchanged value in consecutive messages.

In the example hereafter, the added word is
2022. The position of the modified values is
given by each bit of this word (DT column):

Word
Count
(Hex)

Previous
Data (Hex)

Current
Data (Hex) DT Encoded

Data (Hex)

0 0054 0054 0 2022
1 0815 0815 0 AF00
2 AF58 AF00 1 4567
3 0000 0000 0 AAAA
4 0000 0000 0
5 6542 6542 0
6 FFFF FFFF 0
7 9542 9542 0
8 BC65 BC65 0
9 0000 0000 0
A 0000 4567 1
B 0000 0000 0
C 8966 8966 0
D 8966 8966 0
E 5634 AAAA 1
F 0054 0054 0

Table 2: differential encoding example

 etc2014 - 34. European Telemetry and Test Conference 131

DOI 10.5162/etc2014/7.3

1 indicates that the value has changed; the
modified values follow the first coded word.

0 indicates an unchanged value => this
algorithm needs a first reference message.

5. Tests

5.1 Algorithms efficiency – maximum
performance
First we test the algorithms with the data of the
whole flight.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

%
 o

f Z
er

o
va

lu
e

in
 th

e
m

es
sa

ge
s

Coding Gain

Fig. 5: zero-tracking algorithm – gain compared with
% of zero values in messages

The coding gain increases with the proportion
of zero values in message, to a maximum value
of 6.5 (in green) … but there are curious results
in red: even with a great proportion of zero
values, the coding gain is lower than expected.
This is due to the messages length: all the
corresponding messages have only one to four
data words.

For the whole flight the Zero-tracking algorithm
gives a coding gain of 1.31.

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16

%
 o

f u
nc

ha
ng

ed
 v

al
ue

s

Coding Gain

Fig. 6: differential encoding algorithm – gain
compared with % of unchanged values in messages

The coding gain also increases with the % of
unchanged values, to a maximum of 14.4 in
green. The curious results in red are also due to
the short message length.

For the whole flight the differential encoding
algorithm gives a coding gain of 2.35.

5.2 Algorithms efficiency with data
assembled in packets
In a second step we assemble the data in
packets before coding, as they will be
processed on-board. Each packet will contain
the data of n occurrences of the same
message. This grouping has no impact with
Zero-tracking algorithm (coding of each
message independently).

With the differential encoding algorithm there is
an impact: each new packet must contain a
non-coded reference message to be compliant
with Req. 2. We test the algorithm with different
packet size (number of messages in a packet)
and different duration (accumulation of data
during a limited time):

Table 3: gain for different packet size and different
duration - Max: 1 packet contains all occurrences of
1 message

The maximum coding gain is almost reached
for packets with 512 or more messages. But as
some messages are much slower than others,
this approach is not the good one (too much
time needed to make big packets).

The duration approach is a better one. For 10
second on, the gain (2.31) is near the maximum
(2.35).

Let’s see the performance of the algorithms
with this duration approach for the whole flight:

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1000 2000 3000 4000

C
od

in
g

G
ai

n

Date

Zero Tracking

Differential Encoding

Fig. 7: Algorithms comparison with 10 seconds
packets

 etc2014 - 34. European Telemetry and Test Conference 132

DOI 10.5162/etc2014/7.3

Differential encoding is systematically better
than Zero-Tracking, with a coding gain varying
from 1.5 to 3.5.

6. Algorithm selection and description –
second step
The algorithms we have tested were finally not
so efficient, comparing to those tested for
telemetry data [4]. So we decide to make
additional tests with some of these algorithms:
RLE, adaptive LZW and CCSDS.

6.1 RLE algorithm
The RLE encoding replaces symbol repetitions
in a message by the number of repetitions
followed by the symbol:

AAAAAAAF -> 7AF

For 1553 data we choose the following data
structure to code the packets:
1 bit 7 bits 8 bits 1 bit 7 bits 8 bits ... 8 bits

1 : indicates
repetition

Repetition
count

Symbol to
be repeted

0 : no
repetition

Number n
of symbols Symbol 1 S ... Symbol n

Fig. 8: RLE data structure - 8 bit counter / 8 bits 0 to
FF symbols (RLE 8/8). Symbols are coded when the
number of repetition is > 2.

Alternate versions with 16 bits counters and/or
symbols were also tested, but were less
efficient.

6.2 Adaptive LZW algorithm
The Lemper-Zil-Welch algorithm is a
substitution type coding. The encoder and
decoder have the same dictionary containing
the individual symbols. The encoder searches
the symbol to be coded in the dictionary and
transmit only its position in the dictionary. In the
same step it creates a new entry in the
dictionary by concatenating the symbol with the
previous ones.

Coding algorithm:

 D = Null;
 while (read a char C) do
 if (DC exists in the dictionary) then
 D=DC;
 else
 add DC to dictionary;
 write the D code;
 D = C;
 end if
 end while
 write the D code;

The main interest of this algorithm is that there
is no need to transmit the dictionary: the
encoder and decoder generate directly this
dictionary during the coding/decoding. We
choose 8 bits symbols (for 16 bits symbols the

initial 65536 values initial dictionary would be
too important).

6.3 CCSDS algorithm
The algorithm is built with two functional blocks
([2], [3]):

Fig. 9: CCSDS algorithm functional diagram

Pre-processor:

Each n bits sample is compared with an
estimation (generally the previous value). The
difference between estimation and real value
(n+ 1 bits) is transformed in an n bits integer by
a specific function. These d[i] coded values are
transmitted to the second block.

Adaptive Entropy Coder:

The d[i] output symbols from the pre-processor
are coded in parallel with different methods:

 Option "zero block": when the bloc is
constituted only with 0 values, only the
number of blocs with 0 is transmitted,

 Option "2nd extension" (SE): the J
symbols are paired and transformed in
J/2 coded information y[i], with y[i]=(d[i]
+ d[i+1])(d[i] + d[i+1] + 1)/2 + d[i+1],

 Option "Fundamental Sequence" (FS
format): the 'm' value is coded with m
zeroes followed by one 1 (0: 1 | 1: 01 |
2: 001 | 3: 0001...),

 Option "sample splitting" (Rice) – k
order (k=1 à x): the n-k most significant
bits are coded with FS format, the k
less significant bits are grouped and
placed after the coded MSB,

 Option "No compression": direct
transmission of the input bloc.

The coder chooses the option which gives the
best compression ratio. The coded bloc is
transmitted with a header which identifies the
option.

We kept the data structure used for telemetry
data:

 etc2014 - 34. European Telemetry and Test Conference 133

DOI 10.5162/etc2014/7.3

 8 bits symbols

 One reference value(s) in each bloc

 New "no compression / no reference"
option, for incomplete blocs which will
be transmitted directly before the pre-
processor stage.

 Option coded with four bits

6.4 Data preparation before coding
The data must be organized differently for the
CCSDS algorithm. So we decide to pre-process
the data packet before coding, by adapting for
1553 data what we do in [4]. A first simple
transposition was foreseen, with 8 bits or 16
bits symbols:
Mes 1 : ABCD 1230 4567 9874
Mes 2 : ABCD 1230 4568 9874
Mes 3 : ABCD 1235 4567 9874

Initial data bloc:
ABCD 1230 4567 9874 ABCD 1230 …
4568 9874 ABCD 1235 4567 9874

8 bits transposed data bloc:
ABAB ABCD CDCD 1212 1230 3035 ,,,
4545 4567 6867 9898 9874 7474

16 bits transposed data bloc for 16 bits algorithms:
ABCD ABCD ABCD 1230 1230 1235 ,,,
4567 4568 4567 9874 9874 9874

Fig. 10: pre-processing 1 – simple transposition

We realize that this transposition is not
sufficient for CCSDS, because of its functioning
based on the evolution of a physical parameter.
A new transposition has been tested:
Mes 1 : 8B39 01E6
Mes 2 : 8B39 01E6
...
Mes 124 : 8B39 01E6

8 bits transposition :
8B 8B …..(124)….. 8B 39 3939 01 0101 E6 E6E6

CCSDS Coding
28 BF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FE 00 …
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …
3F FF FF FF FF FF FF FF FF FF FF FF FF FF FF FC 00 00 …
00 00 00 00 00 00 00 00 00 00 00 07 FF FF FF FF FF FF …
FF FF FF FF FF FF FF FF FF 80 00 00 00 00 00 00 00 00 …
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 …
01 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF E
=> Coding Gain 3,92

New transposition CCSDS coding
8B 8B(124).. 8B -> 08 B8
39 3939 -> 03 98
01 0101 -> 00 18
E6 E6E6 -> 0E 68
=> Coding Gain 62 !!!

Fig. 11: pre-processing 2 – new transposition with
124 identical messages – each 8 bits resulting
column is coded independently.

6.5 Results

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500 4000

C
od

in
g

G
ai

n

Date

Differential Encoding
RLE 8 bits
CCSDS
LZW 8 bits

Fig. 12: Algorithms comparison with 10 seconds
packets – CCSDS, RLE and LZW used pre-
processed data with the new algorithm.

CCSDS algorithm gives the best coding gain in
all flight phases, varying from 2.6 to 6.8.

8. Conclusion and future work
This study shows that the same CCSDS
algorithm can be used for 1553 data and
telemetry data, with high coding gain.

We decide to continue its evaluation:

 Noise / disturbance sensibility

 System aspects (behavior in case of
data loss)

 Implantation of the algorithm in on-
board type components (evaluation of
the calculation time)

 Transmission aspects in CCSDS frame
("real" compression ratio)

References
[1] IEEE Aerospace Conference 2008: Application of

Data Compression to the MIL-STD-1553 Data
Bus (Russell W. Duren and Michael W.
Thompson)

[2] CCSDS 121.0-B-1: Recommendation for space
data system standards Lossless data
compression, Blue book

[3] CCSDS 120.0-G-2: Recommendation for space
data system standards Lossless data
compression, Green book

[4] ETTC 2013 Conference: Use of source coding
techniques on Ariane 5 telemetry data (Didier
Schott).

