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Abstract 
In the interest of detecting damage to tapered roller bearings at an early stage and avoiding further 
consequential damage in future, an investigation of reproducible damage to bearing inner races, outer 
races and rolling elements is carried out. The vibration signals generated by the contact of the damaged 
surfaces during bearing runtime are recorded via a piezoelectric vibration transducer. Different scenar-
ios with regard to the rotational speed and the size of the damage are investigated. Based on a calcu-
lation of features, a feed-forward neural network is trained and used to classify the damage. To assess 
the quality of the neural network, the receiver operator characteristic (ROC) and the area under 
curve (AUC) are compared for the neural network as well as for other popular classification algorithms 
such as support vector machine (SVM), decision tree and k-Nearest-Neighbor (KNN). Based on the 
AUC values, this approach showed that the neural network used has the best performance for the clas-
sification of bearing damage with an AUC of 0.994 and an overall classification accuracy of 93.5 %. 

Keywords: Bearing faults, feed-forward neural network, piezoelectric vibration transducer, classifica-
tion performance, condition monitoring  

I. Introduction 
In the field of condition monitoring, a large num-
ber of machine components are already moni-
tored in order to optimize processes or detect 
damage. However, many areas have not yet 
been sufficiently investigated, so that avoidable 
machine failures still occur. This includes unde-
tected bearing or gear damage in agricultural 
machines, which can result in fatal consequen-
tial damage and, due to the repair and downtime 
of the machine, cause considerable costs. A so-
lution to avoid such costs in future could be the 
detection of damage by an analysis of vibration 
data. 
Previous approaches to the detection of faults 
on rotation machine elements have largely been 
based on envelope analysis of vibration signals. 
For this analysis, the theoretical damage fre-
quencies of the bearing, which result from the 
geometry and the rotation speed, are calculated 
first [1]. Subsequently, the vibration signal gen-
erated by the damaged bearing is recorded and 
the envelope curve of the signal is calculated. 
From the frequency bands occurring in the am-
plitude spectrum and the theoretically defined 
damage frequencies, the damage to the bearing 
or the gear is concluded [2, 3]. Another ap-
proach to the investigation of bearing damage 
is based on empirical mode decomposi-
tion (EMD) to obtain a sum of intrinsic mode 
functions (IMF) followed by feature extraction 
and analysis [4]. A further approach to the 

detection of bearing damage uses an envelope 
analysis, followed by a classification using a de-
cision tree [5]. 
This publication presents a study of reproduci-
ble artificial damage to tapered roller bearings. 
The damage is caused to the rolling elements, 
the inner races and the outer races of the bear-
ings in defined sizes. The resulting vibration sig-
nals of the differently damaged bearings are 
measured on a laboratory test bench. For this 
purpose, the bearing is inserted into a bearing 
socket, to which a piezoelectric vibration trans-
ducer is attached by a screw connection, and 
driven at a defined speed via a three-phase mo-
tor and a frequency inverter. Feature extraction 
is performed for the acquired vibration signals. 
Not only common features from the classifica-
tion of rotating machines [6], but other acoustic 
features such as the spectral crest factor or the 
mel-frequency cepstrum coefficients (MFCCs) 
are used. Once the features have been calcu-
lated, a feed-forward neural network is trained 
based on a training data set with labelled data. 
Afterwards, the feed-forward neural network is 
evaluated and compared with other classifiers 
using the ROC and AUC. 
The remainder of this paper is organized as fol-
lows. In Section II the feature extraction is out-
lined and the theoretical fundamentals of the 
used feed-forward neural networks are de-
scribed. Furthermore, the receiver operator 
characteristic and the area under curve are 
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described, which are regarded as measures for 
the performance of a classifier. Section III out-
lines the structure of the used tapered roller 
bearing with the reproducible induced damage. 
Afterwards, the monitoring setup is presented. 
In Section IV the experimental results are dis-
cussed and the used feed-forward neural net-
work is compared to other classification algo-
rithms. Finally, a conclusion and an outlook on 
future work is drawn in Section V.  

II. Classification algorithm and perfor-
mance 

A. Feature extraction 
Feature extraction describes the representation 
of characteristic pattern properties for the pur-
pose of differentiating pattern classes. This also 
ensures that irrelevant information is not repre-
sented and the effective amount of data is re-
duced. The majority of machine learning classi-
fication algorithms uses features as input pa-
rameters to assign patterns to specific clas-
ses [7]. In this approach known features from 
the analysis of rotating machines such as kurto-
sis, skewness or variance are calculated [6]. In 
addition, features from the field of speech pro-
cessing such as the mel-frequency cepstrum 
coefficients, the spectral crest factor or various 
features for the evaluation of the signal power 
are calculated. Overall, a total of 71 features are 
calculated from the vibration data of the bearing 
and used as inputs for the feed-forward neural 
network. 
 
B. Feed-forward neural network 
Neural networks can be described as a series 
of functional transformations, which combine in-
put signals with weights and biases for the clas-
sification of several classes. Feed-forward neu-
ral networks represent a special case of neural 
networks. They allow the signals to propagate 
exclusively from input to output without feed-
back. The two-layer feed-forward network used 
in this paper is shown in Fig. 1 and consists of 
71 inputs, 10 neurons in the hidden layer, 4 neu-
rons in the output layer and 4 outputs. For the 
inputs of the neural network, a total of 71 fea-
tures in the time and frequency domain have 
been calculated. 
The basic neural network model to describe the 
first layer of the network is given as 

 (1) 

where  describes the number of input signals 
 of the network,  the number of neurons in the 

first layer,  the weights and  the biases. 
The resulting values  are known as activa-
tions. 

 

 

Fig. 1: Feed-forward neural network structure 
with 71 inputs, a hidden layer with 10 
neurons and an output layer with 4 neu-
rons for the classification of 4 classes. 

 
Each activation is transformed using a nonlinear 
activation function  to form 

. (2) 

In this approach a hyperbolic tangent sigmoid 
transfer function is used, which is represented 
by the following term 

 (3) 

The second layer of the network can be de-
scribed by an analogous consideration to form  

 (4) 
 

where  describes the number of inputs   
from the first layer,  the number of neurons of 
the second layer,  the weights and  the 
biases. To give a set of network outputs , the 
activations are transformed using an appropri-
ate activation function to form 

. (5) 
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The activation function for the second layer 
used in this approach is the softmax activation 
function which can be described as 

(6) 

The whole feed-forward neural network can be 
described as a combination of the previous 
stages and takes the form the following equa-
tion 

 

 

(7) 

The output  of the network is given as a non-
linear function of a set of input signals  con-
trolled by a vector of adjustable weights  [7]. 
 
C. Cross-validation 
Cross-validation is a technique used to evaluate 
the performance of a model in machine learn-
ing. With new data sets, which were not used in 
the training phase, the performance of the pre-
diction is tested. This is done by partitioning a 
data set into subsets for training and testing the 
algorithm. Since cross-validation does not use 
all data when developing a model, it is a com-
monly used method to prevent over-fitting dur-
ing training. One of the most common cross-val-
idation techniques is k-fold cross-validation. 
The data set is divided into k subsets of approx-
imately the same size. Each subset is used to 
validate the model, while the remaining subset 
is used for training. In total, this process is re-
peated k times to use each subset once for val-
idation. The k validation runs allow the mean 
performance of the algorithm to be deter-
mined [9]. 

 
D. Receiver operating characteristic 
A receiver operating characteristic (ROC) curve 
illustrates the relative trade-off between benefits 
(true positives) and costs (false positives) of a 
classification model at all classification thresh-
olds. A ROC diagram represents the true posi-
tive rate over the false positive rate, as shown 
in Fig. 2. 
 
The true positive rate  is given by 

 (8) 
 

where  are the true positive classified sam-
ples and  the false negatives. The false pos-
itive rate  is given by  
  

 

Fig. 2: Receiver operating characteris-
tic (ROC) curve and the area under 
curve (AUC) 

 (9) 
 

where  are the false positive classified sam-
ples and  the true negatives [10]. The dotted 
line in Fig. 2 represents the strategy of ran-
domly guessing a class. Classifiers whose ROC 
curves lay in the lower right triangle are under-
stood as misinterpretation of the data. Whereas 
classifiers whose ROC curves lay in the upper 
left triangle are considered good classifications, 
depending on the size of the area under the 
ROC curve (AUC) is. Since the AUC is a portion 
of the unit square, its value will be between 0 
and 1. For the strategy of random guessing, the 
AUC value is 0.5. The height of the AUC value 
thus describes the quality of the classifier, 
whereby a value of 1 represents the ideal clas-
sifier [11]. 

III. Experimental Methodology 
A. Tapered roller bearing structure 
Tapered roller bearings are a special type of 
roller bearings that can support both axial and 
radial forces. Due to the rollers being situated 
perpendicular to the rolling axis, these bearings 
can transmit higher forces than deep groove 
ball bearings. The essential components of 
such a bearing consist of the outer race, the roll-
ing elements, the inner race and the cage. The 
cage holds the rolling elements on the running 
surface of the inner race. The outer race is de-
tached from the remaining part of the bearing. 
During the rotation of the bearing, the greatest 
forces are transmitted between the running sur-
faces of the inner race, the outer race and the 
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rolling elements. The schematic structure of the 
investigated bearing is shown in Fig. 3. 

Fig. 3: Schematic structure of the investigated 
tapered roller bearing. 

The bearing used in this paper has an inner di-
ameter of = 35 mm, a diameter from the cen-
ter to the rolling elements of  = 51.95 mm, an 
outer diameter of  = 72 mm, and a width 
of  = 17 mm. Due to the force applied to the 
contact surfaces, these surfaces are most sus-
ceptible to damage [12]. Within the scope of this 
paper, damage to the outer race, inner race and 
rolling element surfaces is specifically investi-
gated. 
 
B. Reproducible bearing damage 
 

 

Fig. 4. Entire tapered roller bearing (a) and 
its individual parts with the artificially 
induced damage to the rolling element 
(b), the inner race (c) and the outer 
race (d). 

A total of twelve damaged bearings are being 
investigated. Four different bearings have been 
examined for an outer race damage, four for an 
inner race damage and four for a rolling element 
damage. The damage is introduced into the in-
ner races, outer races and one rolling elements 
via erosion. Each class of damage is examined 
individually. For each damage class a damage 
of 1.5 mm, 2 mm, 2.5 mm and 3 mm diameter 
is examined. Fig. 4 (a) shows the tapered roller 
bearing type examined and the positions of the 
respective damage for the individual test ob-
jects. Fig. 4 (b) shows a rolling element dam-
age, Fig. 4 (c) an inner race damage and 
Fig. 4 (d) an outer race damage. 
 
C. Experimental setup 
In order to investigate the artificial damage, a 
laboratory test bench has been set up, which is 
shown in Fig. 5. A bearing socket has been 
manufactured which can hold different bearing 
sizes. Piezoelectric vibration transducers can 
be attached to this by means of screw connec-
tions with a defined prestressing force to ensure 
a good signal transmission [13]. A defined radial 
force can be applied to the bearing  outer ring 
by means of a screw attached to the bearing 
block. The bearing, which is set in the socket, is 
connected with a 450 W three-phase motor via 
a low-vibration coupling. A frequency inverter is 
used to set the speed of the three-phase motor 
to an adjustable value. 
 

 

Fig. 5: Test bench for the investigation of 
bearing damages consisting of a 
three-phase motor, a frequency in-
verter, a bearing socket and a piezo-
electric vibration transducer. 

A total of 4 intact tapered roller bearings and 12 
with artificial damage have been examined. 
Damage in the form of circular surfaces with di-
ameters of 1.5 mm, 2 mm, 2.5 mm and 3 mm 
have been investigated for each of the three 
damage classes (outer race, inner race, rolling 
elements). All tested bearings have been inves-
tigated on the laboratory test bench at speeds 
of 100 min-1, 200 min-1, 300 min-1, 400 min-1 

Outer race 

Rolling elements 

Inner race 
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and 500 min-1. The piezoelectric vibration trans-
ducer (IDS Innomic, ICS80) mounted on the 
bearing block via a screw connection has a lin-
ear frequency range up to approximately 10 
kHz. In order to cover the entire linear range of 
the sensor, a sampling rate of 20 kHz is used.  

IV. Experimental results 
With respect to the classification algorithms, the 
four bearing states are combined into classes 
according to Tab. 1.  

Tab. 1: List of the damage assigned to the 
classes for the classification 
 

Class description 
Class 1 Intact bearing 
Class 2  Inner race damage 
Class 3 Outer race damage 
Class 4 Rolling element damage 

 
For each class, a data set of 3440 time windows 
with a length of 2048 sample points and a sam-
pling rate of 20 kHz is examined. Each meas-
urement series for a class contains measure-
ments of five different rotational speeds for four 
bearings each. For the investigation of the clas-
sification algorithms a 10-folded cross-valida-
tion has been used. 
 

 

Fig. 6: Confusion matrix of the test data set 
classified via the feedforward neural 
network. 

Fig. 6 shows the average confusion matrix for 
the classification of the test data set via the 
feed-forward neural network after the 10-folded 
cross-validation. The rows correspond to the 
predicted class of the neural network and the 
columns to the true class. Accordingly, the diag-
onal fields show the correctly classified time 
windows and the non-diagonal fields show the 

incorrectly classified time windows. The column 
on the right shows the percentages of all time 
windows belonging to each class that are cor-
rectly or incorrectly classified. The bottom row 
shows the percentages of all time windows be-
longing to each class that are correctly and in-
correctly classified.  The field at the bottom right 
shows the total accuracy. 
The classification of the neural network is very 
accurate for all classes with an accuracy for 
each class of at least 89.3 %. The overall accu-
racy of the network is 93.5 %, which can be in-
terpreted as a very good prediction of the dam-
age investigated via the network.  
In order to compare the classification of the 
feed-forward neural network with other classifi-
cation algorithms, a linear support vector ma-
chine, a fine decision tree and a k-nearest 
neighbor (k = 10) classification have been eval-
uated. For each of these classification algo-
rithms the same data set and features have 
been used. 
For the comparison of the classifier perfor-
mance the receiver operating characteris-
tic (ROC) curve for each classification algorithm 
has been determined.  
 

 

Fig. 7: Receiver operating characteris-
tic (ROC) for the investigated bearing 
classes determined for four different 
classifiers. 

The averaged results after the 10-folded cross-
validation for the ROC curves are shown in 
Fig. 7. The x-axis shows the false positive rate 
and the y-axis the true positive rate of the clas-
sification. For each individual classification al-
gorithm, the mean value of all four ROC curves 
for the respective classes is considered. The lin-
ear SVM achieves the worst ROC curve in a vis-
ual comparison. Followed by the fine decision 
tree and the k-nearest neighbor algorithm.  The 
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best result is achieved by the feed-forward neu-
ral network.  
In order to quantify the performance of the ROC 
curves and thus of the classifiers more pre-
cisely, the average AUCs are calculated and 
listed in Tab. 2. 

Tab. 2:  Area under curve for the different clas-
sification algorithms 

Classification algorithm AUC 
Neural network 0.994 

Support vector machine 0.968 
Decision tree 0.978 

K-Nearest neighbors 0.989 
 
Overall, the neural network achieves the best 
result with 0.994, followed by KNN with 0.989, 
Decision tree with 0.978 and SVM with 0.968. 
However due to the high AUC values, all classi-
fiers can therefore be rated as suitable for the 
detection of bearing damage. 

V. Conclusion 
This paper presents a study of reproducible 
damage to inner races, outer races and rolling 
elements of tapered roller bearings. In the first 
part of the study, damage caused by erosion in 
the form of circular surfaces with a diameter of 
1.5 mm to 3 mm has been introduced into the 
various components of the bearings. By varying 
the speed, several series of measurements 
have been recorded for each bearing using pie-
zoelectric transducers. A total of 71 features 
have been calculated for the measurement data 
and different classification algorithms have 
been compared using ROC curves and AUC. 
The best classification result has been achieved 
by the feed-forward neural network. 
In future investigations, the influence of the 
damage size on the classification accuracy will 
be investigated. At the same time, the artificial 
damage will be compared with real damage of 
bearings from agricultural machines in order to 
derive a more robust classification. In addition, 
more damaged bearings will be investigated to 
build the test and training data set from different 
bearings. Beyond that wear phenomena, such 
as pitting, will be investigated in order to predic-
tively determine the remaining useful lifetime of 
the bearing. 
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