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Abstract

The continuous refinement of sensor technologies enables the manufacturing industry to capture increasing
amounts of data during the production process. As processes take time to complete, sensors register large
amounts of time-series-like data for each product. In order to make this data usable, a feature extraction is
mandatory. In this work, we discuss and evaluate different network architectures, input pre-processing and
cost functions regarding, among other aspects, their suitability for time series of different lengths.
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1 Introduction

Companies in the manufacturing industry measure
increasing amounts of product and process data in
order to improve their processes. This data is used
to stabilize production, identify factors on the product
quality and improve process efficiency. As processes
take time to complete, sensors register large amounts
of time-series-like data for each product. In contrast to
single-value features measured once for each prod-
uct, temporally or locally resolved measurements pro-
vide much richer information about the underlying
process. The high complexity and dimensionality of
these time series of different lengths point towards
the necessity of Feature Extraction (FE) methods.
Traditionally, domain experts would design hand-
crafted composite features for each time series. This
process is prone to errors and unlikely to capture ev-
ery detail. Recent advances in deep learning have
allowed various Neural-Network(NN)-based auto en-
coding FE techniques to emerge, allowing FE in an
objective unified way.

These new architectures include some, that can na-
tively handle varying length inputs. Those architec-
tures include Recurrent Neural Networks (RNNs),
which we discuss in section 4. Besides RNNs, also
Fully Convolutional Networks are suited for varying
length inputs [7]. However, their hidden dimensional-
ity is not constant, so that less features are produced
for shorter inputs. As this simply shifts the problem of
unequal dimensionality to the next step of analysis,
we do not evaluate these methods further.

For common NN-based Autoencoders (AE) however,
handling varying-length time series still poses major
problems, as only fixed-dimensional inputs are na-
tively supported. While the use of zeropadding or in-
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terpolation already enables the use of common AE,
we show that naive application of these methods is
not ideal as new patterns are introduced to the origi-
nal time series. In this work we discuss and compare
two possibilities to overcome this shortcommming:

1. Zeropadding introduces new patterns and dis-
continuities to time series. We propose the use
of masking to avoid training on these artificially
created patterns in subsection 3.1.

2. Interpolation stretches and compresses patterns
in time series. This effect can be mitigated us-
ing elastic cost functions such as Dynamic Time
Warping (DTW) as discussed in subsection 3.2.

The outline of the paper is as follows: In section 2
the process and data preprocessing is discussed. Our
proposed modifications to common AE architectures
are then motivated and presented in section 3. With
RNNs a more complex network architecture is dis-
cussed in section 4. Finally our experiments are pre-
sented in section 5.

2 Process and Data Description

In the tube production process a piercing press is
used to form a hole in a solid block of hot metal. The
piercing step is crucial in production and strongly in-
fluences many critical quality factors such as the ec-
centricity of the final tube. Thus, data from the pierc-
ing process is of importance in many analysis tasks.
As the process duration of the piercing press de-
pends on the size of the block as well as the cho-
sen process speed, signals resulting from equidis-
tant measurements in time inherently have different
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lengths. In this work we evaluate all approaches on
100000 instances of pressing force time series from
the tube production process. The sampling rate for all
time series is 20 milliseconds. The resulting time se-
ries have lengths between 156 and 258 values.
Signals from industrial processes often contain out-
liers due to the rough environments. In order to be
able to use non-robust estimators such as means
or standard deviations, a Hampel-Filter is applied to
each time series during preprocessing. All identified
outliers are then replaced using interpolation.

The importance of time series normalization when
measuring time series similarities has been shown
multiple times in the literature [6]. When using DTW
or the Mean Squared Error (MSE) it is evident that
already a small offset between two time series leads
to potentially large distances. This problem becomes
more significant, the longer the time series gets. Usu-
ally, each time series is thus normalized to zero mean
and unit variance. For the piercing press data used in
this work we deviate from this approach slightly and
use trimmed mean and standard deviation as more
robust estimators for normalization. This mainly re-
sults in the normalization focusing on the center part
of the signal without taking edge effects such as very
low pressing forces at the start or end into account.

3 Adjustments for common ar-
chitectures

Common AE based techniques, as for example Deep
Convolutional Autoencoders (DCAE) and Fully Con-
nected Autoencoders (FCAE), only support fixed-
dimensional inputs [4]. This restriction originates from
the matrix multiplication in Fully-Connected (FC) Lay-
ers.

In order to use DCAE and other architectures that re-
quire a fixed input dimensionality, simply equalizing
the length of time-series prior to FE naturally comes
to mind. In this work we consider zero-padding and
interpolation as two means to equalize the lengths
of time series. While this already enables the use of
powerful techniques such as the FCAE and DCAE,
the results might not be perfect. We provide two intu-
itive explanations that support this assumption:

|. Zeropadding introduces new patterns to the time
series. This does not only relate to the perfectly
straight line in the zeropadded part of the signal,
but especially to the transition from signal end to
zero. Even for standardized time series with zero
mean and unit variance significant discontinuities
can occur as seen in the curve on top of Fig-
ure 1. Even small inaccuracies of the discontinu-
ities position in the AE’s reconstruction yield high
losses. Thus the AE spents a reasonable amount
of information in the latent representation to ex-
actly model the discontinuity while performance
in meaningful areas suffers.
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IIl. Interpolation causes characteristic local patterns
in the original time series to be stretched or com-
pressed depending on the difference of time se-
ries length to chosen input dimensionality. These
alterations of the original pattern can not be
matched as good as the original pattern by a sin-
gle filter mask. Thus either more filters represent-
ing different alterations of the same original pat-
tern are required or the overall performance can
be expected to drop.

We propose the use of masking when zeropadding is
used to counteract | in subsection 3.1. Also Dynamic
Time Warping (DTW) based losses in combination
with interpolation to counteract |l are discussed in
subsection 3.2.

3.1 Masking layer

Masking is already used to simplify training of RNNs
with inputs of varying dimensionality. It is imple-
mented for RNNs in popular frameworks such as Ten-
sorFlow (tf.keras.layers.masking).

We propose to use masking in combination with ze-
ropadding also for common architectures such as
DCAE. In our masking layer, we simply force all val-
ues in the padded part of the reconstructed signal
to be zero before calculating the loss and perform-
ing back propagation. Errors in the reconstruction of
the padded parts as well as the artificially introduced
discontinuity no longer contribute to the cost func-
tion and thus do not affect training. The overall DCAE
model including the masking layer is shown in Fig-
ure 1.

3.2 Dynamic Time Warping as loss

Dynamic Time Warping (DTW) is widely used as
an elastic similarity measure in time series analysis.
While DTW is already able to compare time series
of unequal lengths, this feature has no relevance for
common architectures as the output always has a
fixed dimensionality so that unequal lengths never oc-
cur. However, as an elastic measure, DTW is very well
suited to compensate for stretched or compressed
patterns introduced by interpolation. Following, we
firstly give a brief introduction to the classic DTW ap-
proach in subsubsection 3.2.1, as we have already
shown its suitability for our data in [10]. As this clas-
sic DTW approach is not differentiable, it cannot be
used for training using backpropagation. Secondly we
introduce the recently published soft-DTW algorithm
in subsubsection 3.2.2, which is a differentiable mod-
ification of DTW [2].

3.2.1 Classic Dynamic Time Warping

To calculate the DTW distance, firstly the signal dif-
ference matrix S containing all pairwise distances of
two time series X = {x1,...,xy} and ¥y = {y1,...,yn }

Sun=dXm,yn) Vm=1,...M n=1,....N, (1)
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Figure 1: Deep Convolutional Autoencoder (DCAE)
with additional masking to avoid training on zero-
padded parts of the input signal.

where d is usually the Euclidean Distance (ED). For
brevity we denote d(x,,y,) as d,,. The DTW align-
ment of the series is defined by a warping function
W = {#1,...,wx} through S, which results in the low-
est cumulated (weighted) distances:

K
W* = argmin Z d(Xwg ;> Vwyr )

W1y WK k=1

Wi = {wr1,wr2}, (2)
where each warping function has to fullfill the well-
known conditions [8]

1. Monotony: wi 1 > wi_11 and wea > wi_12

2. Continuity: we; —wyr_11 < land wgo —wi_12 < 1

3. Boundary conditions: w; = (1,1) and wg = (M, N)

These conditions allow a reformulation as a Dynamic
Programming (DP) algorithm using Bellman’s equa-
tion through a cumulated signal difference matrix S
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Table 1: Constraining the slope of DTW warping
functions using stepping patterns [8].

Formula for S,,,, = Schema
Symmetric-P0 (SymPO0)

Sm,nfl + dIn,n
min Smfl.nfl + dm,n

1
94
1

Symmetric-P1 (SymP1)

Sm Int dm,n

) 2/ 2
§m71,n72 +2dmAnfl +dm,n 1

min §m7 1,n—1 + 2dm,n 2
Sm72,n71 + deflﬂ + dm,n

calculated as follows:

SO.O =0, Sm.,O =0V m>0, SO,n =oVn>0 (3)

» Sm,nfl +dm,n

S;,j = min §m—l.n71 +dmn | (4)
Sm—],n +dm.n

where Equation 4 is known as the stepping pattern.
The commonly used unrestricted Symmetric-PO step-
ping pattern can easily lead to unreasonable map-
pings for real world data, as it allows arbitrary many
points of one time series to map to just one point of
the other. The original authors of DTW proposed the
use of more robust steppings such as Symmetric-P1,
which restrict the slope of the warping function and
thus prohibits degenerated alignments [8, 10]. A vi-
sualization of the Symmetric-P1 in comparison to the
default Symmetric-P0 stepping is given in Table 1. Fi-
nally, the overall DTW cost is equivalent to the cor-
ner element Sy v of the cumulated signal difference
matrix. It is equivalent to the cumulated costs of the
optimal warping function W*:

K
SMN_ mln Zd-xwkpywkz) (5)

Wl:'--~WKk

dtw(x,y) =

3.2.2 Differentiable Dynamic Time Warping

DTW, as presented in subsection 3.2.1, is not contin-
uously differentiable due to the minimum operator in
Equation 2 and Equation 4 respectively. While for a
fixed warping path a derivative with respect to one of
the time series can easily be calculated, the minimum
operator leads to discontinuities for values of ¥, where
small changes result in a different warping path. Fol-
lowing the idea of the Global Alignment Kernel (GAK)
introduced in 2011 [1], y-soft-DTW considers the set
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of all possible alignments Wy, 5 instead of only the
one alignment resulting in minimal costs W* [2].

In order to incorporate all warping paths, the authors
introduce a generalized soft minimum operator with
smoothing parameter y > 0 [2]:

minig,, ai, Y= 0,
—Ylog¥i e/ y>0.

(6)
which for y = 0 results in a regular minimum opera-
tor and for y > 0 in a soft-minimum incorporating all
values in the given set. With the generalized soft min-
imum defined, y-soft-DTW follows as:

min?{ay,...,a,} ;= {

dtw,(X,¥) .=
: X L » (7)
mlny Zd(xwk117ywk‘2)7{wl7'~-WK} G"/\)M.,N
k=1

where W)y, y denotes the set of all possible alignment
paths for two signals of lengths M and N. For the re-
formulation as a DP algorithm, the minimum operator
of Equation 4 is simply replaced by the soft minimum
operator with the corresponding parameter y.

Finally, for y > 0, Equation 7 can be explicitly differen-
tiated as shown in [2]. This enables its use as aloss in
any gradient based setting, such as backpropagation
in NN.

4 Recurrent Network Architec-
tures

RNNSs are inherently able to handle varying lengths
inputs. In contrast to common architectures where the
whole input sequence is fed to the network simultane-
ously, RNNs are fed sequentially. In a time series set-
ting, one value of the time series is fed after the other.
RNNs are obtained by using neurons outputs of one
time step as inputs of the next. In bidirectional RNNs
also the outputs from future time steps are used as
inputs, at the cost of loosing causality [9]. Addition-
ally, memory blocks are often introduced, to capture
dependencies over time explicitly.

To train RNNs, gradients do not only have to be prop-
agated through the network itself but also through all
time steps. The algorithm used for training is referred
to as Backpropagation-Through-Time (BPTT). Due to
the unfolding in time, RNNs can be seen as very deep
networks, although with strong parameter sharing.
RNNs high depth leads to vanishing and exploding
gradient problems. Multiple techniques have been in-
troduced to counteract these problems. One architec-
ture that gained significant attention are Long-Short
Term Memory Networks (LSTMs) [5].

For FE, the encoder is realized as a Bidirectional
LSTM (Bi-LSTM). To obtain a fixed dimensional rep-
resentation for the varying length inputs, the last out-
puts of the deepest LSTM layers are interpreted as
features. The concatenated outputs of the forward
and backward models is the overall representation
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Table 2: Model Architectures. Encoder architecture
is abbreviated as EA. The decoder is build trans-
posed to the encoder without weight sharing. Acti-
vations before output and feature representation are
always linear. Convolutional Layers are denoted as
Conv(Filters, Filtersize, Stride).

Model Architecture

Activation: tanh

Recurrent Activation: hard sigmoid
EA: 2x50 — 2x50 — 2x5

Feature Dimension: 10

Number of Parameters: 170,981
Activation: Leaky-RelLU

EA: Conv(8,6,2) — Conv(16,6,2) — 10
Feature Dimension: 10

Pooling: Not used.

Number of Parameters: 23,515
Activation: Leaky-RelLU

EA: 200 — 200 — 10

Feature Dimension: 10

Number of Parameters: 169,020

Bi-LSTM

DCAE

FCAE

of the input time series in the feature space. For
the decoder, this representation is repeated to match
the length of the input time series, and then fed to
the decoding forward and backwards models in each
timestep. The final prediction for a timestep is ob-
tained by collecting the outputs of the deepest layer
of the forward and backward LSTM respectively, and
feeding them into a single neuron with linear activa-
tion. The weights of the neuron is identical for every
timestep. The number of steps for which the decoder
is run is equivalent to the length of the input.

5 Experiments

In order to validate our proposed adjustments from
section 3, experiments on zeropadded (Experiment
1) and interpolated (Experiment 2) signals are per-
formed. Results for the RNN are obtained using the
original (normalized) signals without zeropadding or
interpolation.

5.1 Experiment Description

Besides experiment specific performance measures
discussed below, also epochs until convergence and
training time per epoch are taken into account. In this
work we define convergence as the last epoch which
lead to an improvement of more than one percent
compared to the previously best result. If no such im-
provement occurs for more than 5 epochs, the train-
ing is stopped. All architectures used for the experi-
ments are shown in Table 2. All models are trained
using the Adamax optimizer with a batch size of 200.
Experiment 1: In order to asses the influence of
masking for zeropadded signals, a comparable met-
ric for models trained with and without masking is

20. GMA/ITG-Fachtagung Sensoren und Messsysteme 2019 718



required. We use the mean squared error (MSE)
between the prediction and the true signal in the
non-zeropadded part of the signal. We motivate this
twofold: Firstly, the accuracy of the zeropadded part
is simply stated irrelevant. Secondly, as discussed in
subsection 3.1, the length of the signal can be seen
as an additional feature and is thus known. Using this
knowledge any error in the reconstruction of the ze-
ropadded part can be rectified.

Experiment 2: Strict dynamic time warping using
stepping restrictions and warping windows result in
reasonable alignments for pressing force signals [10].
However, neither the score of classic DTW using
other steppings than SymPO0 nor the soft DTW score
can be interpreted easily as some average error of
the prediction in the original domain of the data, fol-
lowing the MSE notion. In order to obtain such in-
terpretable errors, we use the resulting MSE of the
aligned signals. The alignment is obtained using clas-
sic DTW with SymP1 steppings and a Sakoe-Chiba
bands of width 30. We denote the resulting metric as
MSEprw. During training we use the soft-DTW im-
plementation by the original authors written as a C-
Extension for Python.

5.2 Results

The results of both experiments and the reference Bi-
LSTM are shown in Table 3.

Experiment 1: For both, the DCAE and FCAE mask-
ing leads to overall better results. The convergence
time of both models is significantly lower and addi-
tionally also the overall MSE reduced. These results
directly support assumption | from section 3. While
training time increases when masking is used, the
overall training is still extremely fast.

Experiment 2: Using soft-DTW in training leads to
significantly lower DTW losses, even for strict step-
pings and warp path regulations which were not
used during training. This shows that soft-DTW is a
suitable replacement in training for non-differentiable
strict DTW. Please note that as described in subsec-
tion 5.1 MSEprw follows the notion of average error
per point in the original data domain, and is thus di-
rectly comparable to the MSE. Supporting assump-
tion Il, MSEptw is consistently lower when soft-DTW
is used for training. The significant increase in train-
ing time results from the high complexity of soft-DTW
and even supersedes the slow training of RNNs.
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