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Abstract 
The Planck-Balance is a table-top version of a Kibble balance. In contrast to many other Kibble balances, 
the Planck-Balance generates an ac (sinusoidal) rather than a dc signal in the dynamic mode. A linear 
sine fitting algorithm is applied to estimate the amplitudes of the induced voltage and the coil motion, 
which determine the force factor Bl of the voice coil of the electromagnetic force compensated balance. 
Different sine fitting algorithms are compared in terms of harmonic distortion, additive Gaussian noise 
and non-coherent sampling. The biases and uncertainties associated with the estimated Bl are also 
compared by numerical simulations. 
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Introduction 
After the redefinition of the kilogram, the Kibble 
balance is one possible approach to calibrate 
mass standards in terms of a fixed value of the 
Planck constant [1]. The Kibble balance has two 
measuring modes: static mode and dynamic 
mode. In the static mode, the gravitational force 
on a mass m is balanced by an electromagnetic 
force that is generated by a voice coil, i.e.  = , where g is the local gravitational 
acceleration, I the electrical current, B the 
magnetic flux density and l the length of the coil-
wire in the B-field. The product Bl is commonly 
called the force factor. In the dynamic mode, Bl 
is obtained by moving the coil with a velocity v 
through the magnetic field, while measuring the 
induced voltage u across the coil ends 
synchronously, i.e.,  = . The Bl obtained in 
the dynamic mode is then used in the static 
mode to evaluate the mass m as a function of 
the coil current I. 
The Planck-Balance (PB) is a table-top sized 
Kibble balance and is currently under 
development by the Physikalisch-Technische 
Bundesanstalt (PTB) and the Technische 
Universität Ilmenau (TUIL) [2]. In the dynamic 
mode of the PB, the coil is moved sinusoidally – 
in contrast to most other Kibble balance 
experiments, where the velocity is kept constant 
– through the B-field. If the coil motion is 
assumed to be perfectly sinusoidal, the velocity 
is simply the time derivative of the sinusoid. 
Therefore, the amplitude V of the velocity 

becomes  =  = 2 , where S is the 
amplitude of the coil motion,   the angular 
frequency and fsig the oscillation frequency. 
Then, Bl is calculated by dividing the amplitude 
of the induced voltage U by the amplitude of the 
velocity V, i.e.,  =  2⁄ . However, this 
is strictly valid only if the coil motion and the 
induced voltage are perfectly sinusoidal. 
Therefore, the accuracy of Bl is influenced by 
the estimation of amplitudes, when 
perturbations, such as noise or distortions 
caused by non-linearities, are present in the 
signal. 
In this paper, a linear sine fitting algorithm is 
applied with perturbations like, e.g., higher 
order harmonics, additive Gaussian white noise 
and non-coherent sampling. The resulting bias 
is investigated in numerical simulations. The 
standard uncertainty associated with the force 
factor Bl is evaluated by the GUM uncertainty 
framework and Monte Carlo simulation, 
respectively. 

Methodology 
In dynamic mode of the PB, the coil sinusoidally 
oscillates through the B-field generated by the 
magnet system, and the coil position is 
measured by a laser interferometer. The 
movement of the coil induces an ac voltage 
across the coil ends, which is digitized by 
means of a multimeter. In the real measurement 
data of the induced voltage and the coil motion, 
higher order harmonics are present in the 
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signals after using Fourier analysis. Therefore, 
the signal of the induced voltage  with time 
t can be described by using a single-component 
sine wave with amplitude U1 superimposed by 
higher order harmonics:  =  + ∑  sin +  , (1) 

where Un and un are the amplitude and the 
initial phase of the nth-order harmonic of the 
induce voltage, respectively. U0 denotes a dc 
offset, and N is the number of higher order 
harmonics, with  ∈ ℕ. 
The coil motion  can also be described by a 
sum of N harmonic terms:  =  + ∑  sin +  , (2) 

where S0 is a dc offset, Sn the amplitude of the 
nth-order harmonic, sn the phase of nth-order 
harmonic. 
The force factor Bl is calculated by using the 
signal frequency fsig and the fundamental 
amplitudes of  and  as  = . (3) 

In the PB system, the signal frequency fsig can 
be accurately achieved. Only the fundamental 
amplitudes U1 and S1 need to be estimated by 
the linear sine fitting algorithm. The following 
algorithms are applied to estimate the 
amplitudes:  

 Three-parameter sine fit; 
 Multiharmonic sine fit; 
 Improved three-parameter sine fit. 

Due to harmonic distortion in the measurement 
data, the accuracy of Bl is partly dependent on 
the fitting algorithm.  

Three-parameter sine fit 
An ideal single-component sine wave can be 
described with an amplitude Y and an initial 
phase  as:  =  +  sin +  (4) 

where  denotes a dc offset. Equivalently, the 
signal in Eq. (4) can be interpreted as a 
superposition of two shifted sine waves:  =  +  sin +  cos (5) 

where A and B are the amplitudes of in-phase 
and in-quadrature components, respectively. 
The signal frequency fsig is assumed to be 
known in Eq. (5), and thus only three 
parameters Y0, A and B are required to be 
estimated. The estimated parameter vector p 
can be represented as  = , , . 
When a set of M samples   from a sine 
wave is sampled at the time instants  , a 
linear least squares method can be used to 

determine the parameter vector p by minimizing 
the sum of the squares of the following errors: min,, ∑  −  −  sin −  cos .(6)  

The estimated parameters of the sine wave can 
be calculated in a matrix form:  =  (7) 

with  =   ⋯  and 

 =  sin cos 1sin cos 1⋮ ⋮ ⋮sin cos 1. (8) 

The amplitude Y of  can be calculated as:  = √ + . (9) 

Multiharmonic sine fit 
In the real measurement data of the induced 
voltage and the coil motion, higher order 
harmonics are present. These higher order 
harmonics may be caused, e.g., by the current 
source or the nonlinear B-field. However, the 
three-parameter sine fitting algorithm is not 
robust against the harmonic distortion with non-
coherent sampling [3]. In order to improve the 
accuracy of the estimated amplitude, the 
multiharmonic sine fit has been proposed in [4]. 
The multiharmonic sine fit is the extension of the 
three- and four-parameter sine fit with the 
known and unknown signal frequency, 
respectively. In this paper, the linear 
optimization procedure based on the three-
parameter sine fit is adopted. 
When the signal contains higher order harmonic 
components, the signal is modeled by  =  + ∑  sin +  , (10) 

where   and   are the amplitude and initial 
phase of the nth-order harmonic, respectively. 
The fitting model for the linear least squares 
method can be written as follows:  =  + ∑  sin +  cos ,
 (11) 

where An and Bn are the nth-order harmonic 
amplitudes of in-phase and in-quadrature 
components, respectively. By using the least 
squares method, the sum of the squares of the 
errors is minimized. The estimated parameters 
can be calculated to extend Eq. (7) as follows:  =  (12) 

where pm is the parameter vector,  =, , … , , , . Here,  =   ⋯   , (13) 

with 
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 = sin sin ⋯ sin,   =cos cos ⋯ cos,   = 1, … , . 

The amplitude Yn of the nth-order harmonic of  can be determined as:  =  + . (14) 

Improved three-parameter sine fit 
Due to harmonic distortion, the conventional 
three-parameter sine fitting algorithm will 
provide a bias of the estimated amplitude for the 
non-coherent sampling. Multiharmonic sine fit is 
useful to estimate the amplitude of each order 
harmonic. The bias of amplitude is relatively low, 
when the number of higher order harmonics 
included in the fitting model approaches to that 
included in the measurement data. However, it 
is not easy to select the number for the fitting 
model. 
An alternative method is to use a coherent 
sampling instead of the non-coherent sampling 
by removing some points at the beginning 
and/or at the end of the data, which makes the 
remaining points cover an integer number of 
periods of the sine wave. 
Firstly, the first zero-crossing sampling point is 
detected, which satisfies the following equation:  − 1 ∙  < 0 . Here  =   and 
q1 denotes the first index of the detected sample. 
The same routine is utilized to detect the other 
zero-crossing sampling points  , where 
Mq is the total number of the detected samples. 
Then, some ending points are removed if they 
are not inside the following range: 

 ∉ ,   − 1 , if  is odd ,   − 1 , otherwise . (15) 

Finally, the remaining points are extracted and 
used to estimate the amplitude by the three-
parameter sine fit.  
In practice, however, it is difficult to extract 
sampling points, which cover an exactly integer 
number of periods. Moreover, reduction of 
some samples can increase the bias and the 
standard deviation of the estimated amplitude 
[5]. If the number of samples is relatively large, 
the influence of reducing samples may be 
neglected in comparison to that due to harmonic 
distortion with non-coherent sampling. The 
simulation results will be shown in the following 
section. 

Uncertainty evaluation 
All the sine fitting algorithms used in this paper 
are linear least squares models, and thus the 
standard deviations of the estimated 
parameters can be evaluated by using the 
covariance matrix V. The expression is given in 
[6] as follows:  = . (16) 

Here, D is given by Eqs. (8) and (13) for the 
three-parameter sine fit and the multiharmonic 
sine fit, respectively. n denotes the noise level 
of measurement. The result of V can be 
presented in the following format: 

 = ,  ,  ⋯ , ,  ,  ⋯ , ⋮ ⋮ ⋱ ⋮,  ,  ⋯ , , (17) 

where ,   is the covariance associated 
with estimates pi and pj.  
The fundamental amplitude Y of the sine wave 
is calculated by using A1 and B1, and thus only 
the covariances associated with A1 and B1 are 
used in the following steps. The submatrix Vx 
extracted from the covariance matrix V is  = ,  , ,  , . (18) 

According to the GUM uncertainty framework 
(GUF) [7], the standard uncertainty y 
associated with the amplitude Y is given by:  = , (19) 

where Cx is the sensitivity matrix and evaluated 
as follows: 

 =    =  
. (20) 

According to Eq. (19), the standard 
uncertainties u and s associated with the 
amplitudes U and S of the induced voltage and 
the coil motion can be deduced, respectively. 
As mentioned before, the force factor Bl is 
calculated by using Eq. (3). The standard 
uncertainty Bl associated with Bl is calculated 
by:  =  , (21) 

where CBl and VBl are the sensitivity matrix and 
covariance matrix for Bl estimation, 
respectively. Here,  =   , 
 =  ,  ,  , ,  ,  , ,  ,  , , 

where  ,  =  and ,  = . 
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As the signal frequency can be accurately 
measured by a frequency counter (< 10-8), the 
term in Eq. (21) representing the signal 
frequency contribution to the uncertainty is 
neglected in this case. After a series of 
deduction, the relative standard deviation 
associated with Bl is: 

 = ⎩⎨
⎧ +  , if ,  = 0

 +  − , , otherwise .

 (22) 

Numerical simulation of the relative bias of 
the amplitude  
In order to investigate the influence of harmonic 
distortion on the Bl determination, the induced 
voltage and the coil motion are required to be 
simulated.  
Firstly, the induced voltage is simulated by 
using a fundamental sine wave with the 
amplitude Uref = 0.3051 V and superimposed by 
higher order harmonics up to 5th-order. The 
amplitudes of 2nd-order up to 5th-order harmonic 
are 0.45 mV, 62.9 V, 2.40 V and 1.92 V, 
respectively. The total harmonic distortion is 
0.15 %. These parameters are obtained 
according to real measurement data [8]. In 
order to simulate the non-coherent sampling, 
the signal frequency fsig is changed from 3.82 Hz 
to 4.02 Hz with the same number of samples M 
= 104, i.e., the sampling frequency fs = 1 kHz 
and the sampling time T = 10 s. For each fsig, a 
data set of induced voltage  is generated 
and taken as the nominal points. Three 
algorithms are applied to estimate the 
fundamental amplitude  . For the 
multiharmonic sine fit, 1st-order up to Nth-order 
harmonics (N = 1, 2, 3 and 4) are included in the 
model, respectively.  When only 1st-order 
harmonic is included in the multiharmonic sine 
fit (i.e., N = 1), the algorithm is the same as the 
three-parameter sine fit. For error comparison 
of amplitude, the value of Uref is taken as the 
reference value. The relative bias of the 
amplitude   is calculated, as  = −  ⁄ . The results are shown in figure 
1. 

 

Figure 1: Relative bias of the amplitude as a 
function of the number of periods. 

When the number of periods is an integer, i.e. 
coherent sampling, the amplitudes obtained 
from the three algorithms are comparable. Due 
to the numerical accuracy of the simulation 
data, the relative bias of the amplitude is in the 
order of 10-15. Therefore, the three algorithms 
are robust against harmonic distortion with 
coherent sampling. However, it can be seen 
that the relative bias of the amplitude provided 
by the three-parameter sine fit is in the order of 
10-6 with the non-coherent sampling. When the 
multiharmonic sine fit is applied, the higher the 
number of included harmonics is, the lower the 
bias of the estimated amplitude becomes. If 
higher order harmonics up to 5th-order (N = 5) 
are included in the fitting model, there is no bias. 
The bias can greatly be reduced for the non-
coherent sampling if the number of samples is 
reduced to obtain an integer number of periods 
(green line in figure 1).  
Moreover, the coil motion is also simulated by 
using a fundamental sine wave with the 
amplitude Sref = 39.92 m and superimposed by 
higher order harmonics up to 5th-order. The 
amplitudes of 2nd-order up to 5th-order harmonic 
are 32.29 nm, 2.93 nm, 0.14 nm and 0.13 nm, 
respectively. The total harmonic distortion is 
0.08 %. Similar to the induced voltage, the data 
set   of the coil motion is generated for 
each fsig. Three algorithms are used to estimate 
the fundamental amplitude  of the coil motion. 
Then, Bl is determined from the estimated 
amplitudes, i.e.,  =  2 . For error 
comparison, the fundamental amplitudes Uref 
and Sref in the simulated signals are used for the 
definition of the reference value of Bl, i.e.,  =  2⁄ . Finally, the relative 
deviation of the calculated  with respect to the 
reference Blref is calculated, as  = −  ⁄ . The simulation results are 
presented in figure 2. 
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Figure 2: Relative bias of Bl as a function of the 
number of periods. The amplitudes 
are estimated by three-parameter 
sine fit (blue line), multiharmonic sine 
fit (N = 2, red line) and improved three-
parameter sine fit (green line), 
respectively. 

Similar results can be seen in figure 2: harmonic 
distortion with coherent sampling has almost no 
influence on Bl determination. However, when 
non-coherent sampling occurs, the three-
parameter sine fit show the highest bias of Bl. 
Compared to the three-parameter sine fit, the 
multiharmonic sine fit (N = 2) can reduce the 
bias of Bl. If an integer number of periods is 
extracted from the non-integer number of 
periods by deleting some ending points, the 
bias can be greatly reduced. 

Numerical simulation of standard deviation 
of amplitude 
In this section, the GUM uncertainty framework 
(GUF) and the Monte Carlo method (MCM) are 
used to estimate the standard deviation of Bl. 
For the signal simulation, the nominal points  of the induced voltage and   of the 
coil motion are the same as those in the former 
section. 
Firstly, the GUF is applied to estimate the 
relative standard deviation of Bl according to 
Eq. (22). According to one set of real 
measurement data, the standard deviations of 
noise are    = 0.1036 mV for the induced 
voltage and  = 1.8768 nm for the coil motion. 
The induced voltage and coil motion are 
measured by independent instruments, and 
here it is assumed that they are uncorrelated, 
i.e. ,  = 0 . The estimated relative 
standard deviation of Bl is shown in figure 3.  

 

Figure 3: Relative standard deviation of Bl as a 
function of the number of periods. The 
amplitudes are estimated by three-
parameter sine fit (blue line), 
multiharmonic sine fit (N = 2, red line) 
and improved three-parameter sine fit 
(green line), respectively. 

In figure 3, all the relative standard deviations 
are in the same order of magnitude (i.e., 10-6). 
The improved three-parameter sine fit achieves 
the highest standard deviation. That is because 
the reduction of some samples increases the 
standard deviation of estimated amplitude. 
Therefore, the relative standard deviation of Bl 
is increased in the order of 10-8. If type A 
evaluation of standard uncertainty is applied, 
the relative uncertainty (k = 1) is increased in the 
order of 10-10, which is much smaller than the 
accuracy aimed for the PB (about 10-8). For the 
other two algorithms, the blue and red lines are 
almost indistinguishable, and the difference 
between them is in the order of 10-10. Moreover, 
when the non-coherent sampling occurs, the 
change of relative standard deviation is in the 
order of 10-9, which is also much smaller than 
the aimed accuracy of the PB. Therefore, the 
influence of non-coherent sampling on the 
standard deviation of Bl can be neglected. 
In practice, the amplitudes U1 and S1 are 
correlated according to the data analyzed in a 
real measurement, and the correlation 
coefficient is about -0.06. Compared to the 
uncorrelated amplitudes U1 and S1, the acquired 
relative standard deviation is in the order of 10-8 
higher. This difference is very low and can be 
neglected. 
Then, the MCM is applied to evaluate the 
relative standard deviation of Bl.  It is assumed 
that the amplitudes U1 and S1 are uncorrelated. 
For each fsig, Gaussian white noise with the 
standard deviation  = 0.1036 mV and  = 
1.8768 nm are superimposed on the nominal 
points of and , respectively. Three 
algorithms are implemented to estimate the 
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amplitudes   and  , and then   is 
determined. The process is repeated 105 times. 
The bias and the standard deviation of  are 
calculated and presented in figure 4. 

 

Figure 4: Bias and standard deviation of Bl 
estimated by the MCM. The dotted 
line represents the mean value of bias 
of Bl and the solid lines represent the 
confidence interval (k = 1). The 
amplitudes are estimated by three-
parameter sine fit (blue), 
multiharmonic sine fit (N = 2, red) and 
improved three-parameter sine fit 
(green). 

As shown in figure 4, the three-parameter sine 
fit provides a bias of the Bl with non-coherent 
sampling, which is identical to the blue line in 
figure 2. Compared to the bias provided by the 
three-parameter sine fit, the influence of non-
coherent sampling on the standard deviation 
can be neglected, even though the improved 
three-parameter sine fit acquires the highest 
standard deviation in figure 3. The results of the 
other two algorithms are almost identical. The 
multiharmonic sine fit with N = 2 is comparable 
to the improved three-parameter sine fit in its 
stability. 
Moreover, the relative standard deviation  
determined by the GUF is compared with that 
provided by the MCM. The  is evaluated by 
Eq. (22), and it is assumed that the amplitudes 
U1 and S1 are uncorrelated. When using the 
MCM, the relative standard deviation   is 
calculated by dividing the standard deviation   associated with   by the reference value 
Blref. As shown in figure 3, the  provided by 
the three-parameter and multiharmonic sine fit 
are indistinguishable, and thus only the latter 
one is presented in figure 5. 

 

Figure 5: Relative standard deviation of Bl 
evaluated by the GUF and MCM, 
respectively. The amplitudes are 
estimated by multiharmonic sine fit (N 
= 2, red line) and improved three-
parameter sine fit (green line). 

In figure 5, the differences between  from 
the GUF and   from the MCM are in the 
order of 10-8 for each algorithm. The difference 
is two orders of magnitude smaller than the 
values of  and . Therefore, the results 
from GUF and MCM are comparable. 

Conclusion 
In order to obtain a high accuracy of the force 
factor Bl, the relative bias and standard 
deviation of Bl are investigated in numerical 
simulations. When the sampled sine wave 
includes higher order harmonics with non-
coherent sampling, the extraction of integer 
periods of the sine wave or multiharmonic sine 
fit can reduce the bias of the estimated 
amplitude, and further improve the accuracy of 
Bl. As for the standard uncertainty of Bl, the 
GUF and MCM are applied and the results of all 
the algorithms are comparable. In the future, 
other influences on the amplitude estimation, 
e.g. time jitter, quantization error, and numerical 
approximation, will also be investigated. 
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