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Summary 
The framework of the single point uncertainty developed at the Institute of Manufacturing Metrology 
(FMT) presents a methodology to determine and evaluate the local measurement uncertainty for a 
measurement setup by local comparison of a measurement series with an associated reference geom-
etry. This approach, which was originally developed and optimized for the processing of complete areal 
measurements of work pieces, was now also extended to line scans found in dimensional testing using 
tactile coordinate measurement machines (CMM). Target of the investigation are straight-toothed steel 
gear wheels, which can be dimensionally characterized by both helix and profile scans using a CMM in 
scanning mode in combination with a rotatory stage. The modification of the single point uncertainty 
framework in order to determine the single point precision of repeated gear wheel measurements was 
implemented successfully but the test setup also yielded abnormally high random measurement errors, 
which could not fully be explained within our examinations. 
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Introduction 
The framework of the single point uncertainty 
describes a methodology to statistically evalu-
ate the local measurement uncertainty of a 
measurement series consisting of n repeated 
single measurements with respect to the asso-
ciated reference geometry in the sense of Inter-
national Vocabulary of Metrology (VIM) [1]. 
Usually, a geometric registration routine is re-
quired to geometrically align each of the single 
measurements with the reference geometry. 
The surface data is represented by triangle 
meshes using the STL file format. Originating 
from homogeneously distributed surface points 
on the reference surface (also called sampling 
points), the distances to each single measured 
surface are calculated. Depending on the sam-
pling strategy applied, slightly different dis-
tances are computed [2]. Finally, each sampling 
point is associated with n calculated distances 
(one for each measurement repetition). For 
each set of distances, the mean value as well 
as the standard deviation can be computed. In 
case the reference geometry is known, the local 
systematic deviations combined with the local 
random deviations represent the single point 
(measurement) uncertainty. In case no refer-
ence measurement exists, the nominal geome-
try of the work piece can be used. In that case, 

the mean distance value represents the combi-
nation of the systematic error and the work 
piece deviations and both effects cannot be 
separated. Nonetheless, the distribution of ran-
dom measurement errors (precision) of the 
measurement setup can be determined. 
The exact knowledge of the single point uncer-
tainty of a measurement setup result can greatly 
influence the quality of the subsequent meas-
urement data evaluations. The processing of 
single point precision data as weighting factors 
in geometry element fitting routines can lead to 
a more accurate determination of geometry ele-
ment properties [3]. For industrial computed to-
mography (CT), the visual evaluation of the lo-
cally varying uncertainties gives direct insight 
into the underlying X-ray penetration lengths. 
This is because they directly affect the single 
point noise due to the impaired signal to noise 
properties of the recorded projections. The 
method was successfully used to correct sys-
tematic measurement errors in CT measure-
ments by determining the systematic single 
point errors of a simulated measurement series 
and subsequently correcting these systematic 
measurement deviations [4]. The core routine 
used in this former work at the Institute of Man-
ufacturing Metrology, which is based on ray-tri-
angle intersection tests, provided accurate re-
sults under most conditions [5]. This algorithm 
computes the distance from each sampling 
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point of the reference / nominal geometry in the 
direction of the vertex normal vectors of these 
sampling points to the triangulated measure-
ment geometry. This sampling strategy is called 
“normal vector” (Fig. 1). If a measured coordi-
nate is trustworthy, the same applies for the nor-
mal vector of the nominal geometry and thus de-
fines the direction in which the corresponding 
point on a measurement surface is most likely 
expected. Mathematically, this problem is de-
scribed by a ray-triangle intersection test, which 
is a well-known problem in the field of computer 
graphics [6–10]. Subsequent development ef-
forts resulted in the introduction of an alternative 
sampling strategy, which solves the problematic 
sampling of edge regions associated with the 
sampling in the direction of the surface normal 
vector [2]. This sampling strategy calculates the 
shortest distance from a sampling point to the 
target surface and is therefore called “shortest 
distance” (Fig. 1). Additionally, this sampling ex-
hibits superior run time properties compared to 
the existing ray-tracing solution. The determina-
tion of the single point uncertainty makes it then 
possible to pass information about the meas-
urement uncertainty to complex extended toler-
ance analysis methods and therefore consider 
the uncertainty inherently associated with any 
measurement [11]. 

Fig. 1: Visualization of the sampling strategies
“shortest distance” (left) and “normal
vector” (right). 

So far, we only determined and evaluated the 
single point uncertainties for measurement sys-
tems producing an areal measurement result 
represented as triangle meshes. These are 
mainly CT and structured-light scanning [12]. 
This contribution presents various suitable ad-
justments to the single point uncertainty frame-
work in order to also be able to process line 
scans from coordinate measurement machines 
(CMM) using the example of gear wheel meas-
urements. 

Measurement data 
For the following demonstration purposes, a 
wire eroded, straight-toothed steel gear wheel 
characterized by 17 teeth, a width of 8 mm and 
tip circle diameter of 19.4 mm is used. The 

measurement setup consists of the tactile CMM 
UPMC 1200 CARAT S-ACC with an included 
rotatory stage. The measurement data evalua-
tion was done using the software tools Zeiss 
Calypso 5.6 and Zeiss Gear Pro 5.9.0.2. Con-
trary to areal measurements, which are typically 
represented by or easily converted into a trian-
gle mesh representation, CMM line scans con-
sist of point clouds with additional meta-infor-
mation (e.g. probing vectors). With respect to 
gear wheel inspection, the guideline 
VDI/VDE 2612 states, “Unless agreed other-
wise, the profile is measured in a transverse 
plane approximately in the middle of the face 
width.” [13]. The profile measurement is com-
plemented by the helix measurement: “The he-
lix preferably is measured on the diameter of the 
V-cylinder.” [13]. Summarizing, each gear flank 
is described by one profile scan and one helix 
scan. The exact scan trajectory in interaction 
with the rotatory stage within the presented ex-
aminations were determined by the software 
Zeiss Gear Pro. All controllable filter operations 
on the measurement data were switched off, the 
ball tip diameter was 0.8 mm. 

Fig. 2: Visualization of a complete tactile gear
wheel measurement consisting of pro-
file and helix scans. 

Figure 2 shows the results of a complete gear 
wheel measurement using the described tactile 
measurement setup. In order to apply the single 
point uncertainty framework, the complete gear 
wheel measurement was repeated 20 times 
(n = 20), following the recommendation in the 
norm ISO 15530-3:2011 [14]. Thus, this setting 
theoretically results in a relative uncertainty of 
the investigations, caused by the limited sam-
pling, of 16 %, assuming normally distributed 
uncertainties [15]. 
At the beginning of the measurement, the coor-
dinate system of the gear wheel with respect to 
the coordinate system of the CMM was defined. 
First, the rotation axis of the gear wheel was de-
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termined by two circle scans. The remaining ro-
tatory symmetry was dissolved by centering of 
the probe stylus between two gear teeth. The 
measurements were performed in a tempera-
ture-controlled environment with temperatures 
set to 20 °C ±0.2 K (temperature classification 
A according to VDI/VDE 2627-1 [16]) with a rel-
ative humidity of 45 % ±10 % (humidity classifi-
cation A according to VDI/VDE 2627-1 [16]). 

Calculating the single point precision 
As mentioned above, the single point uncer-
tainty framework was developed to evaluate the 
uncertainty parameters from repeated areal 
measurements of measurement objects. Con-
trary to that, the tactile gear evaluation is char-
acterized by line scans, thus the sampling strat-
egy using the normal vector of the sampling 
start surface was not feasible. The reason for 
that is that in general a ray-tracing algorithm can 
only test the intersections of a ray with areal tar-
gets which is not the case for line scans. Con-
sequently, the sampling strategy “shortest dis-
tance” had to be used. The measurement re-
sults of a tactile line scan are represented by the 
recording of m measurement points �𝑋𝑋������ ⊆
ℝ� as well as the associated probing vectors 
�𝑉𝑉������ ⊆ ℝ� and the distances �𝑑𝑑������ ⊆  ℝ� 
from the nominal geometry to �𝑋𝑋������  in the di-
rection of the probing vectors �𝑉𝑉������ . Although 
the nominal geometry is not given explicitly in 
the coordinate system of the measurement sys-
tem, the nominal geometry coordinates 
�𝑁𝑁������ ⊆ ℝ� belonging to each measurement 
coordinate �𝑋𝑋������  can be reconstructed as fol-
lows (1): 

𝑁𝑁� � 𝑋𝑋� � 𝑉𝑉� ⋅ 𝑑𝑑� (1)

In the following, ��𝑁𝑁������
� ����

� ⊆ ℝ� denotes the 
nominal geometry of the same line scan of all 𝑛𝑛 
measurements of the measurement series. As-
suming a perfect measurement, the superposi-
tion of all calculated sets of nominal geometry 
coordinates ��𝑁𝑁������

� ����
�

 should result in the 
same nominal geometry by definition. However, 
Fig. 3 shows that this is not the case for real 
measurements due to various kinds of error 
sources influencing the measurements. To de-
termine the single point uncertainties, the com-
mon nominal geometry must be known, be-
cause it represents the definition of the sam-
pling points. As a result of the pre-knowledge, 
that the gear wheel is straight-toothed, we know 
that each nominal helix geometry must be a 
straight line. Consequently, one possibility to re-
construct the nominal helix scan line from the 
repeatedly measured scans is to calculate the 
solution for a line regression model (Fig. 3, 

green line). This was done based on the singu-
lar value decomposition (SVD) of all coordi-
nates ��𝑁𝑁������

� ����
�

 [17], which results in a least 
squares solution for the scan direction vector. 
The position of that scan line is determined by 
the mean value of ��𝑁𝑁������

� ����
�

. 

Fig. 3: Visualization of the calculated nominal
geometry from repeated helix scans
and the result of the linear regression.
Caution: Axes are not equally scaled!

The z-components 𝑒𝑒� of all probing vectors 
�𝑉𝑉������  recorded during the measurements were 
always zero, thus all probing vectors are per-
pendicular to the scan direction 𝑒𝑒�. 

Fig. 4: Projection of the calculated nominal ge-
ometry into the xy-plane. Measure-
ment deviations perpendicular to the 
probing vector (z component is zero) 
are not recorded. 

That means that deviations from the nominal 
geometry perpendicular to both the probing vec-
tor and the scan direction can in principle not be 
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recorded for straight-line scans using only one 
vector �𝑉𝑉������ , which is also observable in Fig. 4. 
Consequently, the regression analysis was nec-
essary here to reconstruct the nominal helix, 
which is required to sample the single point 
scatter. Figure 4, which contains the same 
measurement data as Fig. 3, also shows that 
the repeated scans are affected by some kind 
of offset relative to each other, which indicates 
the influence of a dominant error source within 
the measurement chain. After determining the 
nominal helix scan, sampling points were 
spaced out equally on that line. After that, the 
shortest (signed) Euclidean distances from 
each sampling point to each repeatedly meas-
ured helix scan defined by ��������

�  were calcu-
lated, resulting in the distance sets �𝑡𝑡������ ⊆ ℝ� 
now associated with each sampling point. The 
calculation also allowed for intersections be-
tween sampling points using linear interpolation 
and is therefore not equal to a simple nearest 
neighbor search. The “shortest distance” sam-
pling also additionally requires the vertex nor-
mal vectors for each sampling point in order to 
decide if deviations are counted as positive or 
negative values. These vertex normal vectors 
for each sampling point, are defined by the 
mean vector of �𝑉𝑉������ . Next, the single point 
scatter for each sampling point was defined by 
the standard deviation of �𝑡𝑡������ . The described 
approach was then repeated for all helix scans. 
A very similar data processing pipeline was im-
plemented to determine the nominal profile 
scan geometry. Here, the SVD was used to 
identify the two main axes of the point cloud 
���������

� ����
�

, which was then followed by a re-
gression analysis using a high degree polyno-
mial (ℝ�) model. 

Fig. 5: Visualization of the calculated nominal
geometry from repeated profile scans
and the result of the high order poly-
nomial regression (between the red
lines).

Figure 5 shows the determination of the nomi-
nal profile scan line (embedded between the red 
lines). Note that the recorded z-components 𝑒𝑒� 

of the probing vectors �𝑉𝑉������  during the meas-
urements are again always zero. After that, 
equally spaced sampling points are defined on 
that nominal geometry and the associated ver-
tex normal vectors are calculated by derivation 
of the fitted function (z-components 𝑒𝑒� set to 
zero). Finally, the single point scatter could then 
be calculated the same way as described 
above, which was also repeated for each of the 
profile scans afterwards. 

Results 
Figure 6 shows the calculated single point pre-
cision for all gear wheel profile and helix scans. 
The observed precision values represent the 
superimposition of all uncorrected measure-
ment error contributions along the complete 
measurement chain. This includes the definition 
of the coordinate systems and additional com-
ponents like to rotatory stage. The profile scans 
exhibit systematically lower precision values in 
the range between 2 µm and 10 µm compared 
to the helix scans (between 10 µm and 25 µm). 
Additionally, the precision noticeably fluctuates 
along the helix scans. For the examined meas-
urement setup, the precision of the rotatory 
stage can be regarded as especially important 
Because of that, the rotatory stage was under-
taken additional examinations, which are de-
scribed in the subsequent section. Finally, the 
findings are discussed in the section after that. 

Fig. 6: Single point precision for helix and profile 
scans of repeated gear wheel meas-
urements. 

Testing the precision of the rotatory stage 
The target of the following examination was to 
determine, if the error characteristics of the ro-
tatory stage could account for the observed sin-
gle point precision values. For that purpose, a 
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flick normal (precision cylinder with a flattening 
of 15 µm) was repeatedly measured 20 times. A 
single measurement consisted of two circle 
scans of the cylinder shell surface, which were 
used to determine the cylinder axis. Another cir-
cle scan characterizes the front surface of the 
cylinder and the fourth circle scan, measures 
the flick (flattened area). Figure 7 shows the dis-
tance of the measurement coordinates from the 
common Gaussian circle in Polar coordinates. 
The location of the flick is clearly visible at 
around 10° (see also Fig. 8). The flick normal 
was rotated by the rotatory stage during the 
measurement with a fixed position of the probe 
stylus. This approach makes the verification of 
the precision of the rotatory stage possible, be-
cause the measured coordinates were then ef-
fectively represented by polar coordinates (an-
gle in xy-plane recorded by the rotatory stage 
and radius by the CMM). The coordinate system 
was arranged such that the z-axis was repre-
sented by the determined flick normal cylinder 
axis. Then, the measured coordinates, which 
are part of the flick, were extracted by an itera-
tive distance and angle based search algorithm. 

Fig. 7: Circle scan containing the flick (height
15 µm): Distances from Gaussian cir-
cle. See also coordinates in Fig. 8 

Afterwards, the position of the flick was deter-
mined by robustly fitting a polynomial function 
(degree 1), which can be written as (2), into the 
selected part of the circle scan (Fig. 8). 

𝑓𝑓�𝑥𝑥� � �𝑥𝑥 � � (2)

Fig. 8: Robust line regression at the flick loca-
tion, same coordinate system as
Fig. 7. 

The angular representation of the slope (3) of 
that line then represents the angular position of 
the flick. 

� � ��������� (3)

Consequently, the scatter of that angle ob-
served over multiple repeated measurements 
describes the angular positioning precision of 
the rotatory stage. 
Assuming an underlying normal distribution and 
targeting a level of confidence of approx. 99 %, 
the value of three standard deviations [15] of the 
angular position was determined to be 
83.7 arcsec. Additionally, the probing repeata-
bility of the measurement chain was tested by 
determining the scatter of the perpendicular dis-
tance of the fitted polynomial function to the cyl-
inder axis of the flick normal. Three standard de-
viations were calculated as 0.41 µm. During the 
calibration of the rotatory stage, a wobbling an-
gle of 24 arcsec was determined. Additionally, 
the angle between the rotatory axis and the 
CMM coordinate system was characterized by 
6 arcsec. These two error sources are of sys-
tematic nature and were therefore corrected by 
the measurement software. 

Discussion 
As already mentioned during the discussion of 
Fig. 4, the measurement chain was affected by 
various sources of uncertainty which lead to the 
observation of scatter values up to 20 µm – 
25 µm when determining the single point scat-
ter. This could not be explained by the probing 
scatter of the CMM itself, which is verified by 
regular calibration of the measurement device, 
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as well as by the observed positional repeata-
bility (0.41 µm with 99 % confidence) of the per-
pendicular distance between the flick feature to 
the cylinder axis. A substantial part of the ob-
served single point scatter could be explained 
by the lack of precision of the rotatory stage. 
The remaining part of the observed single point 
scatter is caused by various other influences. It 
is possible, that the centering operation during 
the definition of the coordinate system of the 
gear wheel was unstable enough to be respon-
sible for some the observed effects. Further-
more, the surface roughness is regarded as an 
important influence factor on the achieved 
measurement uncertainties, which is reflected 
by the fact that the surface roughness value Rz 
directly contributes to the measurement uncer-
tainty using the “Virtual CMM” used for the un-
certainty calculation of the used system [18]. 
Additionally, dynamic effects during the scan 
can reduce the achieved precision, which can 
also be observed in Fig. 6 for the helix scans, 
where the precision fluctuates along the scan 
trajectory. 
In this contribution, an adjustment of the single 
point uncertainty framework, which had primar-
ily been developed to evaluated areal measure-
ments, was presented. Now, locally resolved 
uncertainty values can also be calculated for 
CMM examinations. Repeated measurements 
of a steel gear wheel were used to generate the 
measurement data. The adjustment was char-
acterized by the additional reconstruction of the 
underlying nominal geometry from the meas-
urement data. The measurement series exhib-
ited unexpectedly large scatter, which is in gen-
eral untypical for tactile CMM measurements. A 
large part of the observed scatter could be as-
signed to the uncertainty of the used rotatory 
stage, although the observation could not be 
fully explained. 
Finally, the single point uncertainty framework 
was successfully used to determine the scatter 
of the complete measurement chain of repeated 
CMM measurements. Future research efforts 
need to focus on the verification of these results 
by examination of different measurement ob-
jects. 
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