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Abstract

This paper presents an empirical study in which universally applicable fault diagnosis methods are
used to evaluate vibration data of bearings. The data were acquired on two different test beds: a gear
box test bed containing various bearings at different health states, and an accelerated life time (ALT)
test bed to degrade a bearing and introduce an operational fault. Features are extracted from the raw
data of two different accelerometers and used to monitor the actual health state of bearings. For that
purpose, feature selection and classifier training is performed in a supervised learning approach. For
testing the proposed approach, cross validation is applied to the data. The results of the gearbox test
bed show that the classification accuracy data increases with the revolution speed of the bearing.
Furthermore, the data of a high-end sensor allow higher classification accuracy than the data of a low-
cost sensor. The results of the ALT test bed show that the same features that were identified in the
gearbox test start to change significantly when the bearing degrades.
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Introduction

Manufacturing companies continuously try to
increase their productivity, among others by
avoiding machine down times. The latter
involves considerable costs because of the
resulting loss of turnover. Monitoring the
condition of, for instance, bearings and gears,
plays a vital role in the maintenance program
of rotating machines. Early fault detection
could allow to move from a time based
preventive maintenance program to a condition
based predictive maintenance strategy and
reduce unexpected machine downtime and
cost.

Vibration based condition monitoring is an
established approach that has been employed
by industries for many vyears in their
maintenance program. However, up to this
day, machine operators often still base their
maintenance decisions on data from the
periodical and manual inspection of single
machines, which does not always result in
correct conclusions. The common practice is
that vibration measurements are periodically
recorded using portable vibration sensors and
measurement signals are analysed by an
expert to interpret the machine's health
condition. This approach can, however, lead to
serious  misinterpretation, where rapidly
growing faults could be missed.

A continuous condition monitoring approach
enables an early detection of machine faults. In
this way, the machine condition is continuously
tracked and total failures can be anticipated in
advance, hence allowing  appropriate
maintenance actions. Despite its advantages,
continuous monitoring program is however still
not well adopted by industry. Firstly, because it
often involves a high investment cost. Although
recent advancements in sensor, acquisition
and processing hardware have demonstrated
cost-effective solutions [1,2], the economic
benefit of the investment is still not clear and
hard to quantify. Secondly, because many of
those systems still require an expert to
interpret the analysis results. Finally, also
because it is not straight forward to select the
most appropriate method for a specific
application.

A wide range of vibration based bearing fault
detection methods have been proposed in
literature [3,4,5]. Approaches that utilize time
domain features (e.g. crest factor, kurtosis),
frequency and cepstral domain features (e.g.
envelope analysis, cepstral coefficients)
usually assume stationary machine conditions.
Other methods such as cyclo-stationary
analysis (i.e. second order technique in the
frequency domain) and time-frequency domain
analysis (e.g. Wigner-Ville distribution, Hilbert-
Huang transform and wavelet transform based
features) are more appropriate for non-
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stationary processes. Some of those methods
are purely data driven, whereas others use the
physical relation between the bearing
geometry, the rotational shaft speed and the
bearing specific fault frequencies associated to
the impulse behavior introduced by bearing
faults.

In this paper, we present a purely data-driven
method by extracting a large number of
features from vibration data and subsequent
selection and classification of those features in
a supervised learning approach. Test data
were acquired at two different bearing test
beds: a gearbox setup that can be equipped
with bearings of different degradation status,
and a simple rotating shaft with a bearing
under certain radial loads for accelerated
degradation. The following chapters describe
the data analysis method, the experimental
setup and the evaluation results.

Description of the method

The fault diagnosis approach adopted here is a
purely data-driven one, i.e. it incorporates no
physical knowledge about the monitored
system. That makes it on one hand more
flexible and applicable to many kinds of
systems, machines or components. On the
other hand, incorporating extra knowledge
usually improves the diagnostic ability of a
condition monitoring system.

The first step of the proposed procedure is to
extract a large number of features (for instance
[6-16]) from the raw vibration signal. These
features include simple statistical measures
like standard deviation or kurtosis as well as
more advanced features in time,
(time-)frequency, quefrency and wavelet
domain.

Subsequently, the dimensionality of the feature
space is reduced to avoid the curse of
dimensionality. Therefore, the significant
features are identified by feature selection
procedures as described in [17]. In particular, a
standard forward selection filter algorithm
selecting one feature per step was applied. As
selection criterion in each step we adopted
robust distance measures like Dy-Brodley
measure [18] or Mahalanobis distance [19].
Feature selection is stopped when the relative
gain of the selection criterion falls below 1%. In
all of our tests, both distance measures
selected the same features until the stopping
criterion was reached.

After feature extraction and selection, a
classifier in the feature space is trained. For
that purpose we use linear or quadratic normal
Bayes classifiers [20]. These classifiers
assume normally distributed classes and apply
Bayes decision rule to those classes. In the
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linear case, the co-variances of the classes are
assumed to be equal. The validity of using
normally distributed classifiers was checked by
normal probability plots of the feature vectors
(see two examples in Fig. 1).
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Fig. 1:  Normal probability plots of Feature 1,
3000 rpm data, PCB sensor, states
Healthy2 and Faulty2

The supervised learning approach implies that
the method depends on having a sufficient
amount of annotated training data for all states
(failure modes) to be monitored. There are also
classifiers for one-class classification (also
referred to as novelty detection) available [21].
However, those techniques detect only
deviation from a nominal state and are thus
prone to over detection due to changing
operation modes. Furthermore, the feature
selection process depends on having an
annotated data set as well.

The process of evaluating a new data sample
is straightforward: the selected features are
extracted from the raw signals, and the
classifier is applied to those features. Since
many classifiers are able to deliver class
membership probabilities, it is generally
possible to determine instances lying between
two distinct states. However, here we restrict
the evaluation to crisp class decisions by
detecting the maximum class probability for
each observation.

Given annotated training data, the whole
process of feature extraction, feature selection
and classification can be fully automated. The
more useful information the training data
contain, the better the resulting feature subset
and classifier will be. In this context,
information means different states, rotation
speed, repeated measurements with different
samples of the same bearing type, and so on.

Experimental Setup

Two types of experiments have been
performed: (i) an accelerated life time test
(ALT) of a ball bearing on a single shaft drive
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train set-up and (ii) a test on a more complex
gearbox set-up including bearings with various
faults. These setups were provided by the
scientific partner FLANDERS MAKE in Leuven.
The ALT allows to create an operational fault in
a bearing. This test differentiates from other
studies in the fact that they are often limited to
artificially induced faults. Moreover, the fault
evolution and accumulation can be monitored
during the ALT.

The experimental set-up used to perform the
accelerated life time test is shown in Fig. 2.
The set-up comprises of a single shaft with a
test bearing. The shaft is supported with the
help of a support bearing on each side. A
hydraulic cylinder is used to apply a radial load
to the test bearing up to a maximum of 10 kN.
The set-up is driven by a motor at a fixed
rotation speed of 1500 rpm.

Hydraulic cylinder to

apply a radial load Motor

Accelerometer Test bearing

Fig. 2:  The drive train set-up used to reduce
the life time of a bearing to less than
a day, allowing to generate vibration
data during the accumulation of an
operational bearing fault.

Vibration measurement
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Fig. 3:  The load was temporarily increased
from 1.5 kN to 9 kN to accelerate the
wear of the bearing.

The test procedure is schematically illustrated
in Fig. 3. Vibration measurements were
performed under a nominal radial load of 1.5
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kN (i.e. 10% of the dynamic load rating). The
radial load was temporarily increased to 9.0 kN
(i.e. 65% of the dynamic load rating) to
accelerate the degradation of the bearing. In
the beginning the interval was 20 minutes, but
this has been reduced as soon as the first
indication of an incipient fault was noticed in
the measured vibration responses. In total 30
vibration measurements were performed at the
nominal 1.5 kN loading condition and 29
vibration measurements at the high 9.0 kN
radial load.
The applied radial load, the radial vibrations in
the loading direction and the temperature of
the bearing housing were measured during the
test. The machine vibrations were measured
using a piezo film ACH-01-03 accelerometer
and digitized at 12.8 kHz by an embedded
acquisition platform. In each measurement 20
seconds of data was acquired. The
accelerated life time test was stopped when a
vibration peak level of +/- 50 g was reached.
The ALT was performed on a FAG 6205 ball
bearing. Before the start of the test a small
indentation with a diameter of 230 um was
created in the inner race. This indentation is
used as a local stress riser and represents a
local plastic deformation caused by, for
instance, a contamination particle.
Subsequently, the ALT was performed for
several hours. Although bearings can fail in
many different ways, the indentation triggers
the bearing to fail in a more repeatable way.
The test was stopped when severe rolling
contact surface fatigue occurred at the inner
race [22]. The start and the end condition of
the inner race of the test bearing are shown in
Fig. 4.

Start condition End condition

t =0 hours t= 8.1 hours

= i v TR

Fig. 4:  The indentation at the bearing inner
race used as the start condition and
the surface fatigue fault at the inner
race introduced by the ALT.

The second test performed in this study was
an industrially representative gearbox setup.
Fig. 5 shows a photograph and a schematic
top-view of the gearbox setup. The test setup
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consists of (i) an induction electric motor, (ii) a
gearbox and (iii) a magnetic brake. The motor
is controlled by a variable-frequency-drive
(VFD) with either a stationary mode or a
transient mode (run-up/run-down). The motor
speed can be controlled from 0 to 3000 rpm.
The gearbox input shaft is connected to the
motor, the gearbox output shaft is coupled to
the brake. The torque applied to the brake can
be adjusted by the controller from 0 to 50 Nm.
As illustrated in Fig. 5, the gearbox comprises
of three-parallel shafts connected through
contacting spur gear pairs. Note that the
number of gear teeth is indicated in the figure.
The input shaft is supported by deep groove
ball bearings MB ER-10K, while the other
shafts are supported by deep groove ball
bearings MB ER-16K. For simulating a healthy
or faulty state on the gearbox, the right-side
bearing housing that supports the second shaft
is equipped either with a healthy or a damaged
ball bearing of type FAG 6205-C-TVH.

Two healthy bearings and three faulty bearings
with different inner race faults were tested. An
indentation fault with a diameter of 490 um was
created. Two other bearings with operational
faults were created using the ALT setup as
described above. The healthy bearings are
referred as 'Healthy1' and 'Healthy2', while the
faulty bearings are referred as 'Indent,
'Faulty1’, 'Faulty2', in the order of increasing

severity and are illustrated in Fig. 6.
Tacho Gearbox, 3 shafts

Accelerometer

Topview gearbox

MB ER-10K 29 MB ER-10K
— -
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_“: } —
MB ER-16K _‘_J MB ER-16K

Accelerometer

Fig. 5: Gearbox set-up comprising a motor,
3-shaft gearbox and brake to
introduce a load.

For each healthy or faulty state, 2 operating
conditions were imposed on the gearbox
setup, namely two different motor speeds of
1500 and 3000 rpm, respectively. The brake
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torque was kept constant at 50 Nm. Because
of the transmission ratio, the rotational speed
of the second shaft is 29/100 lower than that of
the motor speed, while the torque applied on
the second shaft is 36/90 lower than that of the
brake torque. Hence, for the imposed
operating conditions, the rotational speeds of
the second shaft were 435 and 870 rpm, while
the torque applied to the second shaft was 20
Nm. A high-end PCB accelerometer and a low
cost MEMS accelerometer were mounted on
the gearbox housing as shown in Fig. 5. The
vibration signals were sampled at 50 kHz in 20

seconds data batches.
Healthyl Indent Faultl Fault2 Healthy2

! o l""a

Indentation Fatigue fault Fatigue fault
490 un 1.5x3.0mm 3 x4 mm

Fig. 6:  Five bearing states tested on the
gearbox setup comprising  two
healthy bearings and three faulty
bearings with different severities.

&

Results

In the ALT the features were extracted from
the raw sensor signals in an overlapping
sliding window approach (window length 0.2
seconds, overlap 0.1 seconds). That yields in
199 observations out of each 20 second data
batch. However, for final evaluation, only the
mean value of those 199 observations of a
data batch is observed. Unlike the gearbox
setup, we had no data of different health states
available for feature selection and classifier
training in the accelerated life time test.
Therefore we were restricted to detect
significant changes in the feature values. For
that purpose, cumulative sum (CUSUM)
control charts [23] were applied to the features.
Due to the missing feature selection step, we
evaluated the top ranked features of the
gearbox test. All of those features increased
significantly towards the end of the test run for
the 9.0 kN as well as for the 1.5 kN load
conditions. For example, feature 20 is depicted
in Fig. 7. Due to the increasing feature value,
the upper threshold of the CUSUM control
chart was exceeded after approximately 7.3
hours in the 9.0 kN case and 7.9 hours in the
1.5 kN case, indicating a failure of the bearing.
For control purposes, Fig. 8 shows an
arbitrarily chosen feature. The feature shows
no significant trend, and the CUSUM control
charts don't exceed the thresholds.

Just like in the ALT, the features for the
gearbox test were extracted from the raw
acceleration signals in an overlapping sliding
window approach with a window length of 0.2
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seconds and an overlap of 0.1 seconds,
delivering again 199 observations for each 20
second data batch. After extraction of all
features, the feature selection algorithm was
applied to the 3000 rpm and 1500 rpm motor
speed data independently. Furthermore, we
did not use all available states for feature
selection. We used only the datasets of the
states Healthy1, Healthy2 and Faulty2, but not
Indent and Faulty1.
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Fig. 7:  Feature values and CUSUM control
charts for feature 20 in the ALT test
for load 9.0 kN (left) and 1.5 kN
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Fig. 8:  Feature values and CUSUM control
charts for feature 2 in the ALT test for
load 9.0 kN (left) and 1.5 kN (right).

We first evaluate the data of the high-end PCB
accelerometer. For the 3000 rpm motor speed
data, the algorithm selected 3 top ranked
features and for the 1500 rpm data it selected
4 top ranked features. However, for a first
visual impression we show only the top 2
features for all recorded rotation speeds and all
recorded states in a scatter plot in Fig. 9 (3000
rpm) and Fig. 10 (1500 rpm).
The scatterplots indicate already a few
possible conclusions:
e Different top features were selected for
the different rotation speeds
e The 3000 rpm dataset revealed better
separability
e Faultyl and Faulty2 produced similar
feature values
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e In the 3000 rpm dataset, the Indent-
class lies somewhere in-between the
healthy and the faulty states
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Fig. 9:  Scatter plot of top 2 features for the
3000 rom PCB dataset.
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Fig. 10: Scatter plot of top 2 features for the
1500 rpom PCB dataset.

For classification accuracy estimation we
trained a quadratic normal Bayes classifier
only using observations of the states Healthy2,
Indent and Faulty2 (using two 20 second data
batches each). After training, validation was
performed with another 20 second data batch
of all 5 bearing states. However, as target
class of the classifier we did not use those five
states, but only the simplified states Healthy
(Healthyl and Healthy2), Indent and Faulty
(Faulty1 and Faulty2). According to the feature
selection step, the 3000 rpm data were
validated with the top 3 features and the 1500
rom data were validated with the top 4
features. The validation vyields 99.30%
accuracy for the 3000 rpm data (confusion
matrix in Tab. 2) and 82.41% accuracy
(confusion matrix in Tab. 2) for the 1500 rpm
data. That result confirms the first conclusions
above: the separability of the states Healthy,
Indent and Faulty in the 3000 rpm case is
satisfying, while the separability is worse in the
1500 rpm case. Especially the state Healthy1
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is misclassified in the 1500 rpm case. Since
Healthy1 was not used for classifier training, it
is obviously more likely to be misclassified.

Tab. 1:  Confusion matrix for 3000 rom PCB
data and top 3 features.
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Tab. 4: Confusion matrix for 1500 rom
MEMS data and top 4 features.

Confusion Matrix Estimated State
Healthy | Ident | Faulty
Healthy1 192 7 0
True Healthy2 199 0 0
State Indent 0 199 0
ALT2 0 0 199
ALT3 0 0 199

Tab. 2: Confusion matrix for 1500 rom PCB
data and top 4 features.

Confusion Matrix Estimated State
Healthy | Ident | Faulty
Healthy1 33 166 0
True Healthy2 198 1 0
State Indent 5 194 0
ALT2 0 0 199
ALT3 3 0 196

To compare the results of the PCB sensor with
the MEMS sensor, we extracted the same
features from the raw data of the MEMS
sensor and validated them in the same way.
For the 3000 rpm case that yields in 93.67%
accuracy (confusion matrix in Tab. 3,
scatterplot of top 2 features in Fig. 11) and in
the 1500 rpm case in 78.99% accuracy
(confusion matrix in Tab. 4, scatterplot of top 2
features in Fig. 12). In both cases, the
accuracy of the low-cost MEMS sensor data is
lower than the accuracy of the high-end PCB
sensor data. However, one might argue that
the comparison is not fair, since the feature
selection was performed with the PCB data. In
our experiments, the MEMS sensor did not
perform significantly better when the feature
selection was performed using the MEMS
data.

Tab. 3:  Confusion matrix for 3000 rom
MEMS data and top 6 features.

Confusion Matrix Estimated State
Healthy | Ident | Faulty
Healthy1 199 0 0
True Healthy2 138 61 0
State Indent 2 197 0
ALT2 0 0 199
ALT3 0 0 199

Confusion Matrix Estimated State
Healthy | Ident | Faulty
Healthy1 22 177 0
True Healthy2 199 0 0
ALT2 0 0 199
ALT3 11 7 181
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0.08
< 0.07 -~
o
=
1]
L 0.06 + Healthy1
+ Healthy2
o Indent
0.05 % Faulty1
o Faulty2
4 é 8 10
Feature 1 1073

Fig. 11: Scatter plot of top 2 features for the
3000 rom MEMS dataset.
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Fig. 12: Scatter plot of top 2 features for the
1500 rom MEMS dataset.

Conclusions

The results of this empirical study of vibration
based fault diagnosis methods for bearings
show that the feature based approach can be
used for fault monitoring of bearings.
Furthermore it can be concluded that the
classification accuracy increases with higher
rotational speed of the bearing. The high-end
PCB sensor allows higher accuracy values
than the low-cost MEMS sensor. The ALT test
shows that an upcoming fault can be detected
before total failure of the bearing occurs.

The proposed method does not require any
parameters or physical information about the
system/component to be monitored. This
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makes it very flexible and useful for manifold
industrial applications.
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