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Abstract 
In this work, a hardware-in-the-loop test concept for the evaluation of energy-optimized process 
control is presented. Modern production facilities often contain distributed renewable energy systems 
and controllable loads. Coordinating the operation of these generators and loads can bring benefits in 
that the overall cost is reduced by own consumption or flexibility is provided to the distribution grid. 
However, these operation strategies are not yet state of the art, especially not in small and medium-
sized enterprises. The model-based hardware-in-the-loop test concept that is presented in this work, 
supports the development of appropriate control technology for the automatisation of energy systems 
and processes. In this manner, control algorithms can be simulated in real-time, while being 
implemented on field devices including field communication. Functionalities and performance of the 
automation solution can be evaluated and flaws can be detected. 
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Introduction 
It has become evident that future energy 
systems will have to cope with fluctuations in 
the energy supplied by regenerative sources. 
This could lead to temporary local congestions 
or overcapacities in the power distribution grid. 
Transmission and distribution network opera-
tors in Germany perform feed-in management 
to avoid congestions, curtailing the power input 
to the grid. Curtailment is basically undesirable 
as the plant owner has to be compensated for 
the deficit energy and renewable ressources 
remain unused. In 2017 the amount of 
curtailed energy in Germany summed up to 
5,518 GWh [1]. This number will increase with 
a higher penetration of wind and solar energy 
systems in the future. 

Another way to stabilize the system is to 
design decentralized subsystems capable of 
adapting their feed-in and power consumption 
from the grid to the grid conditions. A key 
benefit of such energy subsystems is the 
flexibility that they offer to the distribution 
system operator (DSO) without the need of 
curtailment [2]. 

Modern production facilities often contain distri-
buted renewable energy systems as well as 
loads that can be subject to demand side 
management, especially in small and medium-

sized enterprises (SMEs) and municipal facili-
ties. In order to achieve the desired flexibility, 
these energy subsystems have to take into 
account the nature of the power output from 
renewable energy sources: quasi-deterministic 
(predictable to a certain amount) from photo-
voltaics (PV), controllable with constraints from 
combined heat and power (CHP) plants, and 
stochastic to quasi-deterministic from wind 
power. They also have to take into account 
constraints arising from different load types: 
continuous processes, discrete processes 
(e. g., purely on-off), essential loads, which 
cannot be switched off, less highly prioritized 
loads, which can be shut down at least for cer-
tain time periods, etc. The core task consists in 
matching the energy supply and demand by 
performing a demand-side scheduling and 
power dispatch within the decentralized energy 
subsystem. This may require local electrical 
energy storage units, such as batteries, be-
cause they serve both as load and as source.  

The implementation of an energy subsystem 
-
-

ceives measurement, status or prediction data 
from heterogeneous information sources via 
different interfaces and in different formats, 
processes them and outputs commands to the 
controlled units in the system. Many sophisti-
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cated proposals to solve this allocation pro-
blem using different methods can be found in 
the literature, e. g., multi-objective optimization 
[3] or rolling-horizon control [4]. Typically, 
these solutions are only validated by 
simulation. However, novel control algorithms 
cannot be implemented in the field without 
prior testing and characterization because 
untested control algorithms would pose a 
safety and security risk for equipment, 
processes, and environment. This is why we 
developed a hardware-in-the-loop (HiL) test 
concept for energy system control validation on 
field hardware including field communication. 

Methods 
To test and characterize the described auto-
mation solution for energy-optimized operation 
we created an HiL testbed. It consists of the 
controller hardware, field-communication peri-
pherals, and a model of the controlled system. 
The functional diagram of the testbed is de-
picted in Fig. 1. The controller hardware is 
implemented as a programmable logic con-
troller (PLC; Wago PFC200) because this is 
the state of the art for industrial process 
control. It is extended by an SQL database for 
data recording and a human machine interface 
(HMI) in form of process visualization.  

 
Fig. 1: Functional diagram of the HiL testbed 

The controlled system with its many subsys-
tems is modelled in Matlab/Simulink (Simscape 
Power Systems) on a desktop computer. The 
model environment communicates with the 
PLC via Modbus/TCP, CAN, and TCP/IP. The 
communication protocols are dictated by 
typical real-world environments in which the 
PLC is to operate. 

The testbed is suited for controllers operating 
heterogeneous energy systems involving AC 
and DC energy sources, loads, and processes 
in an energy-optimized manner.  

 
 

 

Fig. 2: Block diagram of an energy system containing typical components as well as a DC minigrid, 
which consists of DC loads, a high-voltage battery storage, and a DC-coupled photovoltaic 
power plant. 
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A typical heterogenous energy system is 
depicted in Fig. 2 on the preceding page. The 
energy system is connected to the public 
electricity grid and has three operational vol-
tage layers. The first layer is a conventional 
400/230-V three-phase AC grid, in which 
various AC loads and sources are connected. 
As a second layer, the system contains a 350-
V DC subgrid, which is connected unidirectio-
nally to the AC grid (consumption only). The 
DC subgrid is composed of a high-voltage 
battery storage, a PV power plant, and (par-
tially refitted) DC loads. These loads are de-
vices that run on DC internally, such as LED 
lighting and computers; operating them in a DC 
grid clearly reduces AC/DC conversion losses. 
The third layer is a single-phase AC grid uni-
directionally connected to the DC subgrid (con-
sumption only). It represents an uninterruptible 
power supply (UPS) for key components. 
Figure 3 shows the top level of the modelled 
energy system. It is built in a modular way so 
that it can be adapted and parametrized for 
any given AC system comprising components 
belonging to one of six fundamental categories 
(1 6). The layers two (DC grid) and three (AC 
UPS) are implemented in submodels (grey and 
orange blocks). The same remark applies to 
the Modbus and CAN communication inter-
faces (yellow and blue blocks). The characte-

ristics of the functional units used in the model 
have been derived from the characteristics of 
physical units that the PLC is to control in the 
field. To this end, historic data of representa-
tive energy system components were analyzed 
(PV system output, plant power consumption, 
peak powers, power distribution, etc.). 
The control algorithm running on the PLC is 
rule-based and implemented according to IEC 
61131. The many g
about the static and dynamic characteristics of 
system components and the limited resources 
available in field devices usually force one to 
get by without classical approaches such as 
PID control, state-space control, and controller 
parametrization by mathematical optimization.       
Historic data and model-based PV power pre-
dictions are used to improve the scheduling of 
flexible loads and battery power. The imple-
mentation of PV power predictions is based on 
the python library "PVLIB-Python" [5] and the 
numerical weather prediction model "COSMO-
D2" of the German weather service "Deutscher 
Wetterdienst" (DWD) [6]. The prediction is up-
dated every three hours with a forecast horizon 
of 27 hours and once a day with a 45-hour 
horizon. The forecast horizon of the power pre-
diction is determined by the forecast horizon of 
the numerical weather prediction model. 

 

 
Fig. 3: Highest level of the energy system model for the real-time simulation and HiL test of the 

PLC-based system control. 
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Results 
The HiL test concept allows one to validate the 
control quality. Control algorithms can be 
tested and verified, while being implemented 
on field hardware and using field communica-
tion. The testing possibilities include control 
code errors, testing and validating of the 
system dynamics, consideration of special 
cases, and the simulation of critical states.  

By unit testing, single programming organiza-
tion units of the PLC code can be tested.  By 
integration testing, modules of the energy sys-
tem control, such as communication modules 
or device-specific modules, can be evaluated. 
By system testing, the entirety of the modeled 
(virtual-reality) components controlled by the 
PLC can be shown to better meet the objec-
tives of load flexibility and cost reduction than 
the uncontrolled system. 

Figure 4 shows the result of the HiL simulation 
of a daytime period of the energy system. A 
simple control algorithm was used for the en-
ergy system in order to facilitate the evaluation 
of the HiL testbed. The case shown demon-
strates some typical features. Whereas PV 
excess power is available in the first half of the 
day and therefore has to be curtailed, this is 
not the case in the afternoon (Fig. 4a). The 
reason is that a 6-kW load in the AC minigrid 
(layer 3) was switched on by the energy-
system controller (Fig. 4b). As a consequence, 
the battery was charged in the morning (posi-
tive battery power) and discharged in the 
afternoon (negative battery power). This also 
shows in the state of charge of the battery (Fig. 
4d). The resulting rectifier power at the input of 
the DC grid is presented in Fig. 4e. 

The chart in Fig. 5 on the following page is a 
comparison of predicted PV power and 
measured output power for an existing PV 
power plant. The prediction was based on a 
45-hour wheather forecast horizon as 
described above and the measured data were 
taken on site by a field-measurement unit. As 
expected, the prediction does not agree 
perfectly with the actually observed PV power 
output; after all, wheather forecasts are 
uncertain. Nevertheless, even a partially cor-
rect prediction of PV output power to be 
expected on the next day is a valuable piece of 
information. It enables one to better run the 
energy system on the average (not in every 
single case) by increasing the own con-
sumption of electrical energy from the PV 
power plant. 

The charts in Fig. 6 show an analysis of 
exemplary historic energy-system data of two 
full days. During the morning hours of both 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
e) 

 
Fig. 4: Exemplary results of an energy system 

simulation. (a) Available ( ) and cur-
tailed ( ) output power of a PV pow-
er plant. (b) Adaptive load adjustment 
in the AC minigrid (layer 3). (c) Result-
ing battery power in the DC minigrid 
(layer 2). (d) State of charge of the 
battery storage. (e) Rectifier power of 
the DC-grid feed-in from layer 1. 

days the power demand in the energy system 
is higher than the PV power. During midday, 
the PV power exceeds the power demand. For 
this reason, the own consumption is limited to 
the instantaneous value of the power demand 
(Fig. 6a). As a result, power is drawn from the 
grid during all hours, except midday, where 
excess power is fed to the grid (Fig. 6b). This 
can also be derived from the 15-minute mean 
values, a common measure in energy econo-
mics for accounting purposes, of the load (Fig. 
6c) and residual grid powers (Fig. 6d). By con-
trolling the single entities in the system in an 
intelligent way, the residual load curve can be 

0      4           8                12                     16 
   Time / h  
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Fig. 5: Measured ( ) and predicted (  ) 
output power of an existing PV power 
plant (January 15th and 16th, 2019). 
Prediction with a 45-hour forecast 
horizon based on numerical weather 
prediction. 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 6: Analysis of exemplary historic plant 
data (October 10th and 11th, 2018). 
(a) PV power ( ), load ( ) and 
own consumption ( ). (b) Excess 
power fed to the grid ( ), power 
consumption from the grid ( ). (c) 
15-minute mean values of power 
(load). (d) 15-minute mean values of 
power (grid). 

shaped in order to avoid load peaks, to offer 
flexibility to the grid, and to increase own con-
sumption. This can be seen clearly, for 
instance, at the three peak load situations that 
arise from the charging of an electric vehicle, 
alongside the usual daily load curve. 

Discussion and Outlook 
The proposed testbed is suitable to 
characterize and test energy-optimized 
process control solutions that are implemented 
on typical industrial control hardware, including 
typical field communication in real-time. 
Different control algorithms can now be 
implemented on field hardware and their 
performance and implementation accuracy can 
be tested extensively. Furthermore a virtual 
commissioning based on VDI/VDE 3693 can 
be developed [7, 8]. 

The current control algorithm will be evaluated 
extensively with the developed simulation tool. 
Furthermore, the control algorithm will be 
extended and revised. Additionally the PV 
power prediction accuracy will be evaluated by 
comparison with measurement data of a long 
time period including all seasons. 
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