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Summary: 
Soft sensors can be used to predict variables that cannot be measured directly. However, even these 
soft sensors are subject to errors that reduce the accuracy of the prediction. One way to overcome this 
is to predict a target quantity redundantly using independent measurement systems for the input vari-
ables. This study reports on the development of an algorithmic system for combining the redundant 
submodels to one reliable soft sensor. The proof of concept was conducted with a Pichia pastoris bio-
process. 
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Background, Motivation, and Objective 
In biotechnological processes, process varia-
bles exist that cannot be measured directly in 
real-time and therefore have to be determined 
offline in tedious laboratory analyses. To de-
termine these variables online, a so-called soft 
sensor can be utilized. However, the sensors 
contributing inputs to the soft sensors are often 
subject to interference and measurement er-
rors. The typical error types of sensors can be 
classified as follows: bias (intermittent, step-
wise, drift-wise or cyclic deviation), a reduction 
in precision, and a temporary or complete fail-
ure of sensors [1, 2]. The reasons can be at-
tributed to damaged sensors, connection prob-
lems and inadequate calibration [3]. In order to 
be able to calculate an accurate prediction de-
spite these limitations, more complex systems 
are required. One way to identify these individ-
ual sensor errors is to combine the information 
from the entire sensor network [4]. 

In addition to the identification of the errors, 
automated recalibration is also desirable for 
some error types (e.g., drift). One possibility to 
maintain soft sensors is to use selected histori-
cal data points [5]. Another option is the direct 
implementation of new laboratory measure-
ments for the maintenance of the soft sensors 
[5, 6]. However, especially in bioprocesses, 
laboratory measurements are often very time-
consuming and cannot be integrated into the 
running process using these methods. For ex-
ample, in the bioprocess investigated in this 
work, the cultivation of the yeast P. pastoris, the 
target value (dry cell weight concentration, 
hereinafter referred to as X) cannot be deter-

mined in less than 2 days. This study aims to 
predict the target value X using several sepa-
rate submodels and then to statistically inter-
connect the prediction of the submodels. In 
addition, it was examined whether incorrect 
submodels can be identified and directly main-
tained. 

Generation of the process data 
Five cultivations were carried out in a Biostat® 
Cplus bioreactor with a working volume of 15 L 
at 30 °C and 500 mbar. The dissolved oxygen 
was maintained at 40 %. As cultivation medium 
FM22 with an initial glycerol concentration of 
40 g L–1 was used. The pH of the batch cultiva-
tion was controlled to 5 with ammonium hydrox-
ide, which additionally served as a nitrogen 
source. Data pre-processing and modeling 
were performed in MATLAB R2019a. 

Development of the Adaptive Soft Sensor  
Three different submodels were used to predict 
the biomass concentration X. The first submod-
el was used to predict the target value using a 
model based on the pH correction agents (base 
submodel). The second submodel is based on 
the exhaust gas measurements and includes 
the calculation of the carbon dioxide emissions 
rate (CER submodel). The third prediction is 
based on the measurement of a mid-infrared 
sensor (MIR submodel). To predict X using the 
mid infrared spectrum, a Savitzky-Golay filter 
was first applied and then the biomass was 
predicted using partial least squares regression 
(PLSR). 

The sampling interval of the sensors made it 
possible to predict X every 30 s. For the subse-
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quent interconnection, the three predictions 
were averaged within 5-minute intervals and 
their standard deviations were calculated 
(n = 10). A system based on a t-test with a sub-
sequent minimum variance estimator was used 
to combine the submodel predictions to an 
adaptive soft sensor for biomass concentration 
(mixed model).  

 
Figure 1: Structure of the adaptive soft sensor. 

 

Performance of the Adaptive Soft Sensor 
Three datasets were used to calibrate and vali-
date the single submodels. The validation of the 
mixed soft sensor model was performed in two 
ways: on the one hand with the already used 
data with additional artificial errors and on the 
other hand with the remaining two data sets. 

Figure 2 shows the validation of the system for 
artificially generated errors. Three errors were 
added: the intermittent malfunction of the log-
ging of the pH correction agent (I); the intermit-
tent increase of the measuring noise of the mid-
infrared sensor (II) and a stepwise increase of 
the CER based submodel (III).  

In all three cases, the algorithm of the mixed 
model was able to compensate for the sensor 
errors delivering a robust final prediction for X. 
In case of the fault type of stepwise increase 
(bias), recalibration would theoretically be pos-
sible using the two correct soft sensors or his-
torical measurements. With the two datasets 
not used for calibration, malfunctions occurred 
mainly at the MIR measurement, which could 
be compensated for by the developed system 
(data not shown). 

 
Figure 2: Comparison of the individual submodels 
with the adaptive soft sensor. Artificial errors were 
added to the underlying sensor data (I,II,III). 
 
In the future, besides the automated recalibra-
tion due to stepwise biases, the behaviour of 
the system in case of multiple errors will be 
investigated and improved. 
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