Highly Sensitive CH₄ Gas Sensors Based on Flame—spray made CrO_x—doped SnO₂ Sensing Films for Livestock Farming Applications <u>K. Bunpang</u>^{1,2}, A. Wisitsoraat^{3,4}, A. Tuantranont^{3,5}, S. Phanichphant³, C. Liewhiran^{1,3,6} ¹ Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ² Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand ³ Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand ⁴ Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120. Thailand ⁵ Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120. Thailand ⁶ Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author's e-mail address: cliewhiran@gmail.com (C. Liewhiran) ## **Abstract** Methane (CH₄) is one of the most challenging flammable gases to be detected and controlled for domestic safety or environmental monitoring. Methane sensor is highly needed in gas detection equipments for detecting methane released in home, automotive, industrial settings or livestock farming communities [1,2]. Hence, it is interesting to apply effective sensing materials for sensitive CH₄ detection. In this work, the as-prepared 0–2 wt% CrO_x–doped SnO₂ nanoparticles were produced by flame spray pyrolysis in a single step and fabricated as sensitive sensor for detection of CH₄. The as-prepared nanoparticles and their fabricated sensing films were structurally characterized by X-ray diffraction, Energy-dispersive X-ray spectroscopy, nitrogen adsorption, and electron microscopy. The results confirmed that SnO₂ nanoparticles were highly crystalline and CrO_x crystallites with mixed oxidation states should form a solid solution with SnO₂ matrix. For the gas-sensing measurements, fabricated sensors were evaluated at the different CH₄ concentrations and operating temperatures ranging from 200 to 400°C in dry air. The test data showed that the optimal 0.5 wt% CrOx-doped SnO2 sensing films exhibited the highest sensor response of ~1250 with a short response time of less than 2 s towards 1 vol% CH₄ at 350°C. In addition, the optimal 0.5 wt% CrO_x—doped SnO₂ sensor displayed high stability as well as high selectivity against various environmental and flammable gases. Therefore, the CrO_x-doped SnO₂ nanoparticulate sensor is a promising candidate for highly sensitive and selective CH₄ sensor and may be useful in environmental, industrial, and livestock farming applications. **Keywords:** Flame spray pyrolysis, Methane, SnO₂, CrO_x doping, Gas sensor. Fig.1. A typical top–view SEM image of 0.5 wt% CrO_x–doped SnO₂ nanoparticles (P–0.5Cr) (Left) and corresponding selected areas of EDX maps and EDX spectrum of CrO_x-doped SnO₂ nanoparticles with 0.5 wt% Cr (P-0.5Cr). Au elemental spectra caused by the contamination Au-sputtering prior anlysis. Fig. 2 the histograms of typical sensor response towards 1 vol% CH₄ with corresponding change in resistance (inset) of the 0–2 wt% CrO_x-doped SnO₂ (S–0 to S–2Cr) at optimal operating temperatures of 350°C in dry air. ## References - [1] N. Das, A.K. Halder, J.M.A. Sen, H.S. Maiti, Sonochemically prepared tin-dioxide based composition for methane sensor, *Materials Letters* 60, 991-994 (2006); doi: 10.1016/j.matlet.2005.10.058. - [2] W. Zeng, T. Liu, D. Liu, E. Han, Hydrogen sensing and mechanism of M-doped SnO₂ (M = Cr³⁺, Cu²⁺ and Pd²⁺) nanocomposite, *Sensors* and Actuators B: Chemical 160, 455-462 (2011); doi: 10.1016/j.snb.2011.08.008.