Recovery of Reacted MoS₂-based Gas Sensor Using UV-LED Illumination Yunsung Kang, Kyeongseob Hwang, Eunhwan Jo and Jongbaeg Kim* School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea kimjb@yonsei.ac.kr #### Abstract: This paper reports a unique method to recover MoS_2 -based gas sensor to its initial unreacted resistance value using UV-LED illumination after the exposure to NO_2 of $3\sim10$ ppm. The recovery mechanism involving photo-generated electron-hole pairs in MoS_2 was proposed and experimentally verified, while the identical sensor without UV could not recover the original resistance. The recovery of resistance under UV-LED illumination after the exposure to different concentrations of NO_2 was also demonstrated. Our approach to recover the reacted MoS_2 using UV-LED is highly advantageous for the MoS_2 -based room temperature gas sensor to be reusable unlike many existing works on 2D nanomaterials-based room temperature gas sensors that may not recover the initial state after the exposure to target gas. **Key words:** Molybdenum disulfide (MoS_2), Nitrogen dioxide (NO_2) sensor, UV-LED illumination, Recovery, Room temperature gas sensor ### Introduction Nanomaterials which can be applied to room temperature gas sensing have attracted much interest to simplify the fabrication process and sensor design. Recently, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been studied for room temperature gas sensor [1]. Of many 2D TMDCs, molybdenum disulfide (MoS₂) has received significant attention as chemical sensing material due to high surfaceto-volume ratio and its unique electrical property such as a varying band gap as the number of layers changes [2]. MoS₂ is also known to be functional to detect harmful gases at room temperature, however, it requires elevated temperature (~200°C) to recover the original resistance after the exposure to target gas [3]. In this work, we propose a novel method to recover the original resistance of MoS₂-based gas sensor at room temperature using ultraviolet light-emitting diode (UV-LED) illumination that could induce the desorption of gas molecules absorbed onto the MoS₂ surface after NO₂ exposure. #### **Results and Discussion** Fig.1 depicts the optical microscope image of fabricated sensor. The fabrication process is as Fig. 1. The optical microscope image of fabricated sensor. Cr/Au electrodes with 15 μm gap are deposited and patterned on the CVD-grown MoS₂ through shadow mask by evaporation. follows. Firstly, commercially available (6 Carbon Technology) MoS_2 which synthesized by chemical vapor deposition (CVD) on SiO₂ substrate, is prepared. After that, the metal (Cr/Au) electrodes with 15 µm gap are deposited and patterned through a shadow mask by evaporation. The Raman spectra of CVD-grown MoS₂ on SiO₂ substrate are presented in Fig. 2. The difference in Raman shift between E_{2g} and A_{1g} peaks is used to determine the number of MoS₂ layers. In our sample used, we could estimate that the number of MoS₂ layers on the SiO₂ substrate is Fig. 2. Raman spectra of MoS_2 on SiO_2 substrate. The Raman shift, Δ represents the difference between E_{2g} and A_{1g} peaks, which determines the number of MoS_2 layers. It was estimated that bilayered MoS_2 pieces were used in our sensor. two. Fig.3 shows the response of MoS₂ at the exposure to 10 ppm NO2 and the effect of UV-LED illumination to the recovery of the sensor after NO2 exposure. The changed resistance of MoS₂ right after the NO₂ supply was turned off didn't recover in the absence of UV light. With the aid of UV-LED illumination, however, elevated resistance in MoS2 decreased to its original value before the exposure to NO2. This would be originated from the role of photogenerated electron-hole pairs in MoS₂. The photo-generated holes could react with NO2-(ads) remaining on the surface of MoS₂ after NO₂ exposure. This reaction induces the desorption of gas molecules from the surface of MoS2 by converting the NO_2 (ads) to NO_2 (gas) state. The remaining photo-generated electrons could also contribute to the reduction of resistance in MoS₂. The inset in Fig. 3 shows the optical image of the experimental setup and the operating power consumption of 275 nm UV-LED was 31.38 mW. Fig. 4 provides the response of MoS₂ to NO₂ at the concentrations from 9 down to 3 ppm withand without the recovery process assisted by UV-LED illumination. Unlike the insignificant change in recovery of sensing signal after exposure to different concentrations of NO₂ (Fig. 4a), the recovery of resistance in MoS₂ was confirmed with the aid of UV-LED illumination (Fig. 4b). This is a highly advantageous aspect of our approach in that the sensor can discriminate the different concentrations of the target gas. ## Acknowledgements This material is based upon work supported by the Ministry of Trade, Industry & Energy(MOTIE, Korea) under Industrial Technology Innovation Program. No.10054548, 'Development of Suspended Heterogeneous Nanostructure-based Hazardous Gas Microsensor System' Fig. 3. The response of MoS_2 at the exposure to 10 ppm NO_2 and the effect of UV-LED illumination to the recovery of the sensor after NO_2 exposure. The inset shows the optical image of the experimental setup. Fig. 4. The response of MoS_2 to NO_2 at the concentrations from 9 down to 3 ppm (a) without-and (b) with the recovery process assisted by UV-LED illumination. #### References - Q.H. Wang, et al. Electronics and optoelectronics of two-dimensional transitional metal dichalcogenides, *Nature Nanotechnology*, 7, 699-712 (2012) - [2] J.K. Ellis, et al. The indirect to direct band gap transition in multilayered MoS₂ as predicted by screened hybrid density functional theory, *Applied Physics Letters*, 99, 261908 (2011) - [3] M. Donarelli, et al. Response to NO₂ and other gases of resistive chemically exfoliated MoS₂based gas sensors, *Sensors and Actuators B:* Chemical, 207, 602-613 (2015)