Cu₂O/CuO thin film p-p nano-heterostructures for gas sensing

K.Zakrzewska¹, <u>W.Maziarz</u>¹, K. Schneider¹, M. Mazur², D. Wojcieszak², D. Kaczmarek²

¹ AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Kraków, Poland

² Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wrocław, Poland Wojciech.Maziarz@agh.edu.pl

Abstract:

Thin films of $\text{Cu}_2\text{O}/\text{CuO}$ deposited by reactive magnetron sputtering followed by controlled annealing in air are proposed as new p – p type nano-heterostructures for gas sensing. Homogenous Cu_2O thin films are obtained up to 20% O_2 in Ar+O₂ sputtering atmosphere. Annealing for 1h at 400°C results in bilayer structure of $\text{Cu}_2\text{O}/\text{CuO}$ sensitive to 8 ppm NO₂ at 155°C.

Key words: gas sensors, nanomaterials, heterostructures, thin films, CuO, Cu₂O

Introduction

In comparison to single metal oxides, the nanoheterostructures appear as very attractive alternative solutions especially in photocatalysis [1] and gas sensing [2]. The most frequently studied combinations are n-n type (e.g. TiO₂-SnO₂ [3]) and n-p type (e.g. ZnO-CuO [4]). While the application of n-type metal oxides is widespread in gas sensing, much smaller number of papers concentrates on those of p-type. However, thin/thick films and nanowires of p-type semiconducting CuO and Cu₂O have been recently given a particular attention [5-7] due to their good electrical conductivity, direct band gap and availability.

From all different classes of nanoheterostructures, we concentrate on bi-layer and multilayer thin films with well-defined interfaces. To the best of our knowledge, this is the first report on NO₂ gas sensing by thin films of Cu₂O/CuO prepared by magnetron sputtering followed by controlled annealing in air.

Experimental

Thin films were deposited onto silicon, amorphous silica and alumina substrates by reactive magnetron sputtering from Cu (99,999%). The influence of oxygen content in $Ar+O_2$ gas mixture (15-35%) on the growth mechanism and the resulting properties was studied. Film thickness was measured with a Talysurf CCI Taylor Hobson optical profilometer. Crystallographic structure was determined by X-ray diffraction at

glancing incidence with a Philips X'Pert Pro diffractometer. Film morphology was studied with a FEI Helios NanoLab 600i scanning electron microscope. Film transformation to $\text{Cu}_2\text{O}/\text{CuO}$ nanostructure was performed by annealing in air at 400°C for a controlled amount of time. Gas sensing measurements were carried out in a custom-made system capable of detecting resistance changes under stabilized temperature chosen within the range from 20°C to 400°C , humidity concentration of 50% Rh and modulated gas flow up to 20 ppm NO_2 .

Results

Thin films deposited by the reactive magnetron sputtering from the Cu target up to 20%O2 crystallize mostly in Cu₂O cubic structure. Low oxygen concentrations of 15% and 17.5% O2 in the reactive mixture indicate a tendency towards amorphisation while the presence of metallic Cu cannot be excluded (Fig.1a). Crystallization in CuO monoclinic structure takes place as a result of annealing in air at 400°C (Fig.1b). Oxvgen diffusion towards the substrate can be controlled by annealing time and after 1h it was possible to obtain a Cu₂O-CuO bilayer heterostructure shown in Fig.2. The electrical resistance R of the films depends on the oxygen content in the Ar+O₂ sputtering mixture and at 15-17.5% O₂ can be optimized for gas sensor measurements by a suitable choice of film thickness (Fig.3).

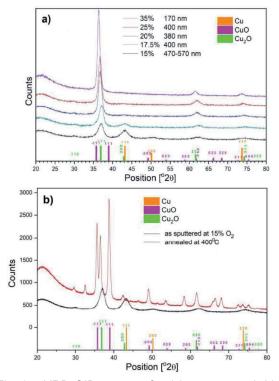


Fig. 1. XRD GID patterns for (a) as-sputtered thin films deposited from Cu target in the reactive magnetron sputtering in the Ar+O $_2$ gas mixture, (b) annealed thin film

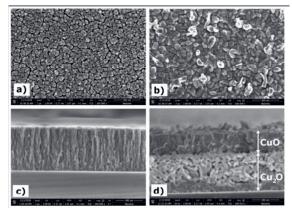


Fig.2.SEM images of: (a) the surface of as-sputtered thin film obtained at 15% O_2 , (b) the surface of the same film after annealing in air at 400° C, (c) cross-section of the film presented in (a), (d) cross-section of the film presented in (b).

Dynamic changes in R upon NO_2 on/off profile presented in Fig.3 at a constant but relatively low temperature of 155°C are reproducible for the consecutive cycles. However, a drift in the baseline signal can be clearly seen. Stabilization of the baseline is expected in Cu_2O -CuO bilayer structures.

Conclusions

Several factors affecting the growth, fundamental properties and gas sensing behavior have been identified in the case of Cu₂O-CuO thin films deposited by reactive magnetron sputtering from Cu target in the Ar+O₂ atmosphere. Bi-

layered structure was obtained for samples grown at low oxygen concentrations (less than 20% O_2) by annealing in air at 400°C for a controllable amount of time. The films respond to the changing NO_2 concentration by a resistance decrease typical for p-type gas sensors.

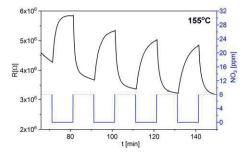


Fig. 3. Dynamic changes in the electrical resistance R of Cu₂O thin film obtained by magnetron sputtering at 17.5% O₂ upon 8 ppm NO₂ at 155°C

Acknowledgement

This work was supported by National Science Centre. Poland UMO-2016/23/B/ST7/00894.

References

- [1] R. Marschall, Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater. 24 (2014) 2421–2440; doi:10.1002/adfm.201303214
- [2] D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review, *Sens. Actuators B* 204 (2014) 250-272; doi: 10.1016/j.snb.2014.07.074
- [3] B. Lyson-Sypien, A. Kusior, M. Rekas, J. Zukrowski, M. Gajewska, K. Michalow-Mauke, T. Graule, M. Radecka and K. Zakrzewska, Nanocrystalline TiO₂/SnO₂ heterostructures for gas sensing, *Beilstein J. Nanotechnol.* 8 (2017) 108–122; doi:10.3762/bjnano.8.12
- [4] Yo. Nakamura, H.Yoshioka, M. Miyayama, H.Yanagida, T. Tsurutani, Yu. Nakamura, Selective CO gas sensing mechanism with CuO/ZnO heterocontact, *J.Electrochem.Soc.* 137 (1990) 940-943; doi: 10.1149/1.2086583
- [5] M. Hubner, C.E. Simion, A. Tomescu-Sfanoiu, S. Pokhrel, N. Barsan, U. Weimar, Influence of humidity on CO sensing with p-type CuO thick film gas sensors, *Sens. Actuators B* 153 (2011) 347-353; doi: 10.1016/j.snb.2010.10.046
- [6] A.S. Zoolfakar, M.Z. Ahmad, R.A. Rani, J.Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, K. Kalantar-Zadeh, Nanostructured copper oxides as ethanol sensors, *Sens. Actuators B* 185 (2013) 620-627; doi:10.1016/j.snb.2013.05.042
- [7] M.E. Mazhar, G. Faglia, E. Comini, D. Zappa, C. Baratto, G. Sberveglieri, Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors, *Sens. Actuators B* 185 (2013) 620-627; doi:10.1016/j.snb.2015.05.050