SnO₂/TiO₂ thin film n-n heterostructures for H₂ and NO₂ gas sensing

Piotr Nowak¹, Wojciech Maziarz¹, Artur Rydosz¹, Kazimierz Kowalski², Katarzyna Zakrzewska¹

AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, 30-059 Krakow, Poland,

AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, Krakow

Piotr.Nowak@agh.edu.pl

Abstract:

Pure SnO_2 and SnO_2/TiO_2 heterostructure based gas sensors for reducing H_2 and oxidizing NO_2 in the temperature range of $80-400^{\circ}C$ were investigated. SnO_2 thin films were prepared by RF magneton sputtering, whereas TiO_2 layers were deposited using a relatively less exploited Langmuir-Blodgett (L-B) technique. TiO_2 thin films were characterized with different spectroscopy and imaging methods (XPS, XRD, EDS, SEM, optical profilometry) which confirmed the presence of TiO_2 on the SnO_2 surfaces. The resistance change of SnO_2/TiO_2 system is higher than that of pure SnO_2 thin films for both H_2 and NO_2 gases. Additional TiO_2 layers significantly improve the response of SnO_2/TiO_2 gas sensors (in comparison to pure SnO_2) in the range of SnO_2/TiO_2 even for low concentrations of SnO_2/TiO_2 heterostructure based sensors obtained using combined sputtering/L-B methods can be highly sensitive for H_2 and SnO_2 .

Key words: gas sensors, n-n heterostructures, SnO₂/TiO₂ thin films, nitrogen dioxide

Introduction

TiO₂ and SnO₂ materials are among the most common metal oxides used for gas sensing [1-3]. The possibility to use different structures and preparation methods (physical chemical) of TiO₂ and SnO₂ based gas sensors was widely investigated [4-6]. In this paper we discuss the Langmuir-Blodgett (L-B) method an emerging technique [7] in electronic applications which allows to prepare TiO2 ultrathin films at room temperature without modification of the substrate. In this paper we compare properties of pure SnO₂ and SnO₂/TiO₂ heterostructures, responses to reducing H₂ and oxidizing NO₂

Material preparation and measurements

SnO₂ thin films were deposited onto special substrates with defined interdigital electrodes by RF magnetron sputtering from Sn target (20% O₂,180°C, 50 W, 30 min). The SnO₂ layer was 200 nm thick. The TiO₂/SnO₂ structures were obtained by depositing TiO₂ thin films on previously prepared SnO₂ substrates using Langmuir-Blodgett technique (nanopowder of rutile was a starting material). The processes

were performed using Langmuir KSV NIMA trough (Biolin Scientific company, Sweden) at room temperature and under normal pressure. Gas sensitivity measurements were carried out in a gas chamber with a volume of about 30 cm 3 over the range of temperatures between 80 and 400 $^{\circ}$ C [5]. The sensors were exposed to NO $_2$ and H $_2$ gases at different concentration levels.

Results

Thin layers of TiO₂ obtained using the L-B method were characterized with SEM, XPS, XRD, EDS and optical profilometry methods. The XPS spectrum and SEM image of the TiO₂ layer is presented in Figure 1.

The SnO_2/TiO_2 heterostructure shows higher resistance than that of pure SnO_2 thin films but an additional TiO_2 layer increases the response to both reducing and oxidizing gases. Figure 2 shows the response of the SnO_2/TiO_2 system compared to pure SnO_2 based sensor at $400^{\circ}C$ within the H_2 concentration range from 15 to 325 ppm. It was observed that even for the smallest H_2 concentrations, there is an increase in the response of the SnO_2/TiO_2 sensor in relation to the pure SnO_2 thin film. Both

materials are n-type semiconductors thus the resistance R of the sensors drops under exposure to reducing H_2 gas, while it rises under exposure to oxidizing NO_2 gas.

Fig. 1. Characteristic XPS peaks for Ti $^{4+}$ in TiO $_2$ thin film obtained from nanopowder of rutile, SEM of TiO $_2$ layers on the silica substrate (inset)

Fig. 2. Resistance changes of SnO₂/TiO₂ and pure SnO₂ thin films to H₂ at 400^oC

Despite the significant increase in the SnO_2/TiO_2 system resistance compared to pure SnO_2 sensor the response was improved by the TiO_2 thin layer addition (Figure 2).

Fig. 3. The responses of pure SnO_2 and SnO_2/TiO_2 heterostructure based gas sensors to 20 ppm of NO_2 at $400^{\circ}C$

For SnO_2 sensors, the response defined as a ratio of sensor resistance R in NO_2 to resistance R_0 in air is of about R/R_0 = 70, whereas for SnO_2/TiO_2 system R/R_0 increases to 450 (at $400^{\circ}C$).

Conclusions

Spectroscopy and imaging methods used to characterize the investigated samples clearly indicate the proposed L-B technique is effective for depositing of TiO₂ thin films. Moreover, L-B, in contrast to physical vapour methods, is a non-destructive procedure which does not damage the SnO₂ substrates. heterostructures obtained by depositing an additional TiO2 thin layer on SnO2 thin films have higher gas response than pure SnO2 for both reducing (H₂) and oxidizing (NO₂) gases. It seems that SnO₂/TiO₂ based gas sensor is highly sensitive even to low concentrations of NO₂ gas. The significant response increase was observed especially over the range of 200°C -400°C.

Acknowledgement

This work was supported by National Science Centre, Poland UMO-2016/23/B/ST7/00894.

References

[1] M. C. Carotta, A. Fioravanti, S. Gherardi, C.Malagù, M. Sacerdoti, G. Ghiotti, S. Morandi, (Ti,Sn) solid solutions as functional materials for gas sensing, *Sensors and Actuators B* 194, 195–205 (2014); doi: 10.1016/j.snb.2013.12.021

[2] E. Comini, C. Baratto, I. Concina, G. Faglia,
M. Falasconi, M. Ferroni, V. Galstyan, E. Gobbi,
A. Ponzoni, A.Vomiero, D. Zappa, V. Sberveglieri,
G. Sberveglieri, Metal oxide nanoscience and nanotechnology for chemical sensors, *Sensors and Actuators B* 179, 3–20 (2013); doi:
10.1016/j.snb.2012.10.027

[3] K. Grossmann, U. Weimar, N. Barsan, Semiconducting metal oxides based gas sensors, Semiconductors and Semimetals 88, chapter 8, 261-282 (2013); doi: 10.1016/B978-0-12-396489-2.00008-4

[4] B. Lyson-Sypien, A. Kusior, M. Rekas, J. Zukrowski, M. Gajewska, K. Michalow-Mauke, T. Graule, M. Radecka and K. Zakrzewska, Nanocrystalline TiO₂/SnO₂ heterostructures for gas sensing, *Beilstein J. Nanotechnol.* 2017, 8, 108–122; doi:10.3762/bjnano.8.12

[5] W. Maziarz, A. Kusior and A. Trenczek-Zajac, Nanostructured TiO₂-based gas sensors with enhanced sensitivity to reducing gases, *Beilstein J. Nanotechnol.* 7, 1718–1726 (2016); doi:10.3762/bjnano.7.164

[6] M. Radecka, A. Kusior, A. Lacz, A. Trenczek-Zajac, B. Lyson-Sypien, K. Zakrzewska, Nanocrystalline TiO₂/SnO₂ composites for gas sensors, *J Therm Anal Calorim* 108, 1079 (2012); doi: 10.1007/s10973-011-1966-y

[7] K. Choudhary, V. Manjuladevi, R. K. Gupta, P. Bhattacharyya, A. Hazra, and S. Kumar, Ultrathin films of TiO₂ nanoparticles at interfaces, *Langmuir*, 31, 1385-1392 (2015); doi: 10.1021/la503514p